首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   241篇
  免费   14篇
  2023年   1篇
  2022年   2篇
  2021年   6篇
  2020年   5篇
  2019年   4篇
  2018年   2篇
  2017年   6篇
  2016年   10篇
  2015年   11篇
  2014年   20篇
  2013年   16篇
  2012年   22篇
  2011年   15篇
  2010年   8篇
  2009年   13篇
  2008年   22篇
  2007年   16篇
  2006年   13篇
  2005年   12篇
  2004年   10篇
  2003年   7篇
  2002年   8篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   5篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1984年   2篇
  1976年   1篇
  1973年   1篇
排序方式: 共有255条查询结果,搜索用时 15 毫秒
81.
In this study, we analyzed the influence of proteinase expression on the cellular differentiation of Herpetomonas samuelpessoai. Along cellular differentiation, which was induced by dimethylsulfoxide (DMSO), the trypanosomatids secreted several molecules with variable proteolytic activity. All of them were inhibited by 10 m M 1,10-phenanthroline, suggesting that they are zinc-metalloproteinases. Analysis of parasite extracts revealed the occurrence of a 63-kDa metalloproteinase and a 45-kDa cysteine proteinase. After extraction with Triton X-114 followed by water-detergent partition, the 63-kDa component was present in both aqueous and detergent phases, which indicated that this enzyme may be distributed over different cellular compartments including membrane domains. The 45-kDa component, however, presented hydrophilic properties and was predominantly expressed by DMSO non-treated parasites, suggesting that proteinases may be involved in the process of cellular differentiation in H. samuelpessoai. This was confirmed by the fact that a cysteine proteinase inhibitor abrogated parasite differentiation. The role of proteinases and their relevance in the differentiation of H. samuelpessoai are discussed.  相似文献   
82.
Candida yeasts frequently cause life-threatening systemic infections in immunocompromised hosts. In the present study, gelatin-SDS-PAGE analysis was used to characterize extracellular proteinases in 44 oral clinical isolates of Candida albicans from HIV-positive (29/50) and healthy children (15/50). Our survey indicates that these oral clinical isolates of C. albicans have complex extracellular proteolytic activity profiles, which illustrates the heterogeneity of this species. We showed four distinct proteolytic patterns composed of distinct serine (30-58 kDa) and metalloproteinase (64-95 kDa) activities, based on the inhibition profile with phenylmethylsulfonyl fluoride and 1,10-phenanthroline, respectively. This is the first report on secreted serine and metalloproteinases present in the culture supernatant fluids of C. albicans; however, we did not observe a significant correlation between proteolytic profile expressed by the C. albicans isolates from HIV-positive children and CD4(+) T cell count and plasma viral load.  相似文献   
83.
Copper(II) complexes of N2-octyl-(S)-phenylalaninamide (Noc-Phe-NH2), N2-dodecyl-(S)-phenylalaninamide (Ndo-Phe-NH2), and N2-octyl-(S)-norleucinamide (Noc-NLeu-NH2), dynamically adsorbed on a reversed-phase C18 column, were able to perform the direct enantiomeric separation of unmodified amino acids, amino acid amides and esters, hydroxy acids, and dipeptides by elution with aqueous or mixed aqueous-organic solutions containing copper(II) sulphate or acetate. The role played by several parameters in the separation procedure was examined with the copper(II) complex of Noc-Phe-NH2 [concentration of the copper(II) ion in the eluent, pH and eluent polarity, amount of adsorbed selector]. The separation was shown to occur entirely on the stationary phase. The mechanism of chiral discrimination is discussed in terms of the chromatographic parameters and of the structure of the copper(II) complexes in solution and in the solid state. The chiral stationary phase maintained its separation ability for about 3 months. However, the column could be easily restored by recovering the selector with methanol and repeating the loading procedure. © 1996 Wiley-Liss, Inc.  相似文献   
84.
Gluconeogenesis in livers from overnight fasted weaned rats submitted to short‐term insulin‐induced hypoglycaemia (IIH) was investigated. For this purpose, a condition of hyperinsulinemia/hypoglycaemia was obtained with an intraperitoneal (ip) injection of regular insulin (1.0 U kg?1). Control group (COG group) received ip saline. The studies were performed 30 min after insulin (IIH group) or saline (COG group) injection. The livers from IIH and COG rats were perfused with L‐alanine (5 mM), L‐lactate (2 mM), L‐glutamine (10 mM) or glycerol (2 mM). Hepatic glucose, L‐lactate and pyruvate production from L‐alanine was not affected by IIH. In agreement with this result, the hepatic ability in producing glucose from L‐lactate or glycerol remained unchanged (IIH group vs. COG group). However, livers from IIH rats showed higher glucose production from L‐glutamine than livers from COG rats and, in the IIH rats, the production of glucose from L‐glutamine was higher than that from L‐alanine. The higher glucose production in livers from the IIH group, when compared with the COG group was due to its entrance further on gluconeogenic pathway. Taken together, the results suggest that L‐glutamine is better than L‐alanine, as gluconeogenic substrate in livers of hypoglyceaemic weaned rats. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
85.
Peptide nucleic acids (PNAs) containing an insert of three chiral monomers based on D-lysine ('chiral box') were synthesized and used as probes in Biospecific Interaction Analysis (BIA) for the recognition of DNA containing the W1282X point mutation of the cystic fibrosis gene. Hybridization experiments carried out in solution showed enhanced mismatch recognition when compared with the analogous achiral PNAs and oligonucleotides. The signal intensity was lower, but the selectivity of the Biacore response was found to be much higher than that observed with achiral PNAs. The newly designed chiral PNA probes were also found to hybridize with a 1:1 mixture of normal (N-W1282X) and mutated (M-W1282X) DNA oligomers immobilized on the biosensor, thus allowing discrimination not only between a normal and a mutated sequence (healthy/homozygous), but also between homo- and heterozygous individuals. These results suggest that 'chiral box' PNAs are potential powerful tools for the analysis of single point mutations of biological/biomedical relevance.  相似文献   
86.
The effect of extremely low frequency and low amplitude magnetic fields on gap junctional permeability was investigated by using reconstituted connexin32 hemi channel in liposomes. Cytochrome c was loaded inside these proteoliposomes and its reduction upon addition of ascorbate in the bulk aqueous phase was adopted as the index of hemi channel permeability. The permeability rate of the hemi channels, expressed as DeltaA/min, was dependent on the incubation temperature of proteoliposomes. The effect of exposures to magnetic fields at different frequencies (7, 13 and 18 Hz) and amplitudes (50, 50 and 70 microT, respectively), and at different temperatures (16, 18 and 24 degrees C) was studied. Only the exposure of proteoliposomes to 18-Hz (B(acpeak) and B(dc)=70 microT) magnetic field for 60 min at 16+/-0.4 degrees C resulted in a significant enhancement of the hemi channel permeability from DeltaA/min=0.0007+/-0.0002 to DeltaA/min=0.0010+/-0.0001 (P=0.030). This enhancement was not found for magnetic field exposures of liposomes kept at the higher temperatures tested. Temperature appears to influence lipid bilayer arrangement in such a way as being capable to mask possible effects induced by the magnetic field. Although the observed effect was very low, it seems to confirm the applicability of our model previously proposed for the interaction of low frequency electromagnetic fields with lipid membrane.  相似文献   
87.
Non-albicans Candida species cause 35-65% of all candidemias in the general population, especially in immunosuppressed individuals. Here, we describe a case of a 19-year-old HIV-infected man with pneumonia due to a yeast-like organism. This clinical yeast isolate was identified as Candida guilliermondii through mycological tests. C. guilliermondii was cultivated in brain heart infusion medium for 48 h at 37 degrees C. After sequential centrifugation and concentration steps, the free-cell culture supernatant was obtained and extracellular proteolytic activity was assayed firstly using gelatin-SDS-PAGE. A 50 kDa proteolytic enzyme was detected with activity at physiological pH. This activity was completely blocked by 10 mM phenylmethylsulphonyl fluoride (PMSF), a serine proteinase inhibitor, suggesting that this extracellular proteinase belongs to the serine proteinase class. E-64, a strong cysteine proteinase inhibitor, and pepstatin A, a specific aspartic proteolytic inhibitor, did not interfere with the 50 kDa proteinase. Conversely, a zinc-metalloproteinase inhibitor (1,10-phenanthroline) restrained the proteinase activity released by C. guilliermondii by approximately 50%. Proteinases are a well-known class of enzymes that participate in a vast context of yeast-host interactions. In an effort to establish a functional implication for this extracellular serine-type enzyme, we investigated its capacity to hydrolyze some serum proteins and extracellular matrix components. We demonstrated that the 50 kDa exocellular serine proteinase cleaved human serum albumin, non-immune human immunoglobulin G, human fibronectin and human placental laminin, generating low molecular mass polypeptides. Collectively, these results showed for the first time the ability of an extracellular proteolytic enzyme other than aspartic-type proteinases in destroying a broad spectrum of relevant host proteins by a clinical species of non-albicans Candida.  相似文献   
88.
89.
Parallel PNA:PNA duplexes were synthesized and conjugated with meso‐tris(pyridyl)phenylporphyrin carboxylic acid at the N‐terminus. The introduction of one porphyrin unit was shown to affect slightly the stability of the PNA:PNA parallel duplex, whereas the presence of two porphyrin units at the same end resulted in a dramatic increase of the melting temperature, accompanied by hysteresis between melting and cooling curves. The circular dichroism (CD) profile of the Soret band and fluorescence quenching strongly support the occurrence of a face‐to‐face interaction between the two porphyrin units. Introduction of a L‐lysine residue at the C‐terminal of one strand of the parallel duplex induced a left‐handed helical structure in the PNA:PNA duplex if the latter contains only one or no porphyrin moiety. The left‐handed helicity was revealed by nucleobase CD profile at 240–280 nm and by the induced‐CD observed in the presence of the DiSC2(5) cyanine dye at ~500–550 nm. Surprisingly, the presence of two porphyrin units led to the disappearance of the nucleobase CD signal and the absence of CD exciton coupling within the Soret band region. In addition, a dramatic decrease of induced CD of DiSC2(5) was observed. These results are in agreement with a model where the porphyrin–porphyrin interactions cause partial loss of chirality of the PNA:PNA parallel duplex, forcing it to adopt a ladder‐like conformation. Chirality 27:864–874, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   
90.
Studying photosensitized oxidation of unsaturated phospholipids is of importance for understanding the basic processes underlying photodynamic therapy, photoaging and many other biological dysfunctions. In this review we show that the giant unilamellar vesicle, when used as a simplified model of biological membranes, is a powerful tool to investigate how in situ photogenerated oxidative species impact the phospholipid bilayer. The extent of membrane damage can be modulated by choosing a specific photosensitizer (PS) which is activated by light irradiation and can react by either type I and or type II mechanism. We will show that type II PS generates only singlet oxygen which reacts to the phospholipid acyl double bond. The byproduct thus formed is a lipid hydroperoxide which accumulates in the membrane as a function of singlet oxygen production and induces an increase in its area without significantly affecting membrane permeability. The presence of a lipid hydroperoxide can also play an important role in the formation of the lipid domain for mimetic plasma membranes. Lipid hydroperoxides can be also transformed in shortened chain compounds, such as aldehydes and carboxylic acids, in the presence of a PS that reacts via the type I mechanism. The presence of such byproducts may form hydrophilic pores in the membrane for moderate oxidative stress or promote membrane disruption for massive oxidation. Our results provide a new tool to explore membrane response to an oxidative stress and may have implications in biological signaling of redox misbalance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号