首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   358篇
  免费   32篇
  390篇
  2022年   4篇
  2021年   7篇
  2020年   2篇
  2019年   4篇
  2018年   4篇
  2017年   2篇
  2016年   7篇
  2015年   12篇
  2014年   9篇
  2013年   12篇
  2012年   18篇
  2011年   34篇
  2010年   22篇
  2009年   11篇
  2008年   20篇
  2007年   21篇
  2006年   14篇
  2005年   15篇
  2004年   18篇
  2003年   24篇
  2002年   18篇
  2001年   12篇
  2000年   15篇
  1999年   12篇
  1998年   7篇
  1997年   4篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   5篇
  1991年   3篇
  1990年   4篇
  1989年   1篇
  1988年   4篇
  1987年   1篇
  1986年   2篇
  1985年   5篇
  1984年   4篇
  1983年   6篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1977年   3篇
  1975年   1篇
  1974年   2篇
  1972年   2篇
  1971年   3篇
  1970年   1篇
  1913年   2篇
排序方式: 共有390条查询结果,搜索用时 15 毫秒
51.
The most frequent type of N-glycan synthesized by lepidopteran Sf9 cells appears to be fucosylated Man3GlcNAc2,and this has been a limitation for a large scale production and utilization of therapeutic glycoproteins in cultured insect cells. The current knowledge of the protein glycosylation pathway derived from structural studies on recombinant glyco-proteins expressed by using baculovirus vectors. In this work we provide more direct evidence for the sequential events occurring in the processing of endogenous N-glycoproteins of noninfected Sf9 cells. By metabolic labeling with radioactive mannose, we characterized the glycan structures which accumulated in the presence of processing inhibitors (castanospermine and swainsonine) and in the presence of an intracellular trafficking inhibitor (monensin). We thus demonstrated that from the glycan precursor Glc3Man9GlcNAc2 to GlcNAcMan5(Fuc)GlcNAc2 intermediate, the processing pathway in Sf9 cells paralleled the one demonstrated in mammalian cells. By using monensin, we demonstrated the formation of Man3(Fuc)GlcNAc2 from GlcNAcMan3(Fuc)GlcNAc2, a reaction which has not been described in mammalian cells. Our results support the idea that the hexosaminidase activity is of physiological relevance to the glycosylation pathway and is Golgi located.  相似文献   
52.
The Apa molecules secreted by Mycobacterium tuberculosis, Mycobacterium bovis, or BCG have been identified as major immunodominant antigens. Mass spectrometry analysis indicated similar mannosylation, a complete pattern from 1 up to 9 hexose residues/mole of protein, of the native species from the 3 reference strains. The recombinant antigen expressed in M. smegmatis revealed a different mannosylation pattern: species containing 7 to 9 sugar residues/mole of protein were in the highest proportion, whereas species bearing a low number of sugar residues were almost absent. The 45/47-kDa recombinant antigen expressed in E. coli was devoid of sugar residues. The proteins purified from M. tuberculosis, M. bovis, or BCG have a high capacity to elicit in vivo potent delayed-type hypersensitivity (DTH) reactions and to stimulate in vitro sensitized T lymphocytes of guinea pigs immunized with living BCG. The recombinant Apa expressed in Mycobacterium smegmatis was 4-fold less potent in vivo in the DTH assay and 10-fold less active in vitro to stimulate sensitized T lymphocytes than the native proteins. The recombinant protein expressed in Escherichia coli was nearly unable to elicit DTH reactions in vivo or to stimulate T lymphocytes in vitro. Thus the observed biological effects were related to the extent of glycosylation of the antigen.  相似文献   
53.

RCD1 is a member of the plant-specific SRO protein family. Several SRO genes have been functionally identified in the regulation of abiotic stresses in Arabidopsis and other plant species. However, the function of SROs is largely unknown in apple (Malus×domestica). In this study, six MdSRO-encoding genes were isolated, categorized into two types and mapped to six chromosomes. The phylogenetic analysis demonstrated that the sequences of the AtSRO and MdSRO proteins are highly conserved. Subsequently, expression analysis showed that MdSRO genes had different expression profiles in different tissues and in response to various stresses. Finally, MdRCD1 was isolated for functional identification. The results showed that resistance to oxidation stress in apple calli was enhanced by MdRCD1 overexpression and weakened by MdRCD1 suppression. MdRCD1 also played a crucial role in the regulation of ROS homeostasis in transgenic apple calli and Arabidopsis. Ectopic expression of MdRCD1 significantly enhanced resistance to salt and oxidative stresses in transgenic lines. In addition, MdRCD1 also enhanced drought tolerance due to its influence on stomatal opening. Based on these results, we conclude that MdRCD1 is an important regulator in abiotic stress response.

  相似文献   
54.
55.

Background  

Thiomonas strains are ubiquitous in arsenic-contaminated environments. Differences between Thiomonas strains in the way they have adapted and respond to arsenic have never been studied in detail. For this purpose, five Thiomonas strains, that are interesting in terms of arsenic metabolism were selected: T. arsenivorans, Thiomonas spp. WJ68 and 3As are able to oxidise As(III), while Thiomonas sp. Ynys1 and T. perometabolis are not. Moreover, T. arsenivorans and 3As present interesting physiological traits, in particular that these strains are able to use As(III) as an electron donor.  相似文献   
56.
57.

Background  

Previous studies in Ascomycetes have shown that the function of gene families of which the size is considerably larger in extant pathogens than in non-pathogens could be related to pathogenicity traits. However, by only comparing gene inventories in extant species, no insights can be gained into the evolutionary process that gave rise to these larger family sizes in pathogens. Moreover, most studies which consider gene families in extant species only tend to explain observed differences in gene family sizes by gains rather than by losses, hereby largely underestimating the impact of gene loss during genome evolution.  相似文献   
58.
Despite intensive research into how amyloid structures can impair cellular viability, the molecular nature of these toxic species and the cellular mechanisms involved are not clearly defined and may differ from one disease to another. We systematically analyzed, in Saccharomyces cerevisiae, genes that increase the toxicity of an amyloid (M8), previously selected in yeast on the sole basis of its cellular toxicity (and consequently qualified as “artificial”). This genomic screening identified the Vps-C HOPS (homotypic vacuole fusion and protein sorting) complex as a key-player in amyloid toxicity. This finding led us to analyze further the phenotype induced by M8 expression. M8-expressing cells displayed an identical phenotype to vps mutants in terms of endocytosis, vacuolar morphology and salt sensitivity. The direct and specific interaction between M8 and lipids reinforces the role of membrane formation in toxicity due to M8. Together these findings suggest a model in which amyloid toxicity results from membrane fission.Key words: aggregates, amyloid, yeast, euroscarf  相似文献   
59.
60.

Background

Bacterial interactions with the environment- and/or host largely depend on the bacterial glycome. The specificities of a bacterial glycome are largely determined by glycosyltransferases (GTs), the enzymes involved in transferring sugar moieties from an activated donor to a specific substrate. Of these GTs their coding regions, but mainly also their substrate specificity are still largely unannotated as most sequence-based annotation flows suffer from the lack of characterized sequence motifs that can aid in the prediction of the substrate specificity.

Results

In this work, we developed an analysis flow that uses sequence-based strategies to predict novel GTs, but also exploits a network-based approach to infer the putative substrate classes of these predicted GTs. Our analysis flow was benchmarked with the well-documented GT-repertoire of Campylobacter jejuni NCTC 11168 and applied to the probiotic model Lactobacillus rhamnosus GG to expand our insights in the glycosylation potential of this bacterium. In L. rhamnosus GG we could predict 48 GTs of which eight were not previously reported. For at least 20 of these GTs a substrate relation was inferred.

Conclusions

We confirmed through experimental validation our prediction of WelI acting upstream of WelE in the biosynthesis of exopolysaccharides. We further hypothesize to have identified in L. rhamnosus GG the yet undiscovered genes involved in the biosynthesis of glucose-rich glycans and novel GTs involved in the glycosylation of proteins. Interestingly, we also predict GTs with well-known functions in peptidoglycan synthesis to also play a role in protein glycosylation.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-349) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号