首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4965篇
  免费   336篇
  国内免费   1篇
  2023年   29篇
  2022年   89篇
  2021年   169篇
  2020年   136篇
  2019年   153篇
  2018年   200篇
  2017年   170篇
  2016年   223篇
  2015年   288篇
  2014年   315篇
  2013年   353篇
  2012年   439篇
  2011年   375篇
  2010年   218篇
  2009年   191篇
  2008年   239篇
  2007年   234篇
  2006年   198篇
  2005年   165篇
  2004年   157篇
  2003年   134篇
  2002年   139篇
  2001年   105篇
  2000年   77篇
  1999年   68篇
  1998年   31篇
  1997年   25篇
  1996年   17篇
  1995年   16篇
  1994年   12篇
  1993年   12篇
  1992年   32篇
  1991年   31篇
  1990年   21篇
  1989年   19篇
  1988年   19篇
  1987年   19篇
  1986年   18篇
  1985年   18篇
  1984年   16篇
  1983年   13篇
  1982年   14篇
  1981年   6篇
  1980年   12篇
  1979年   8篇
  1978年   14篇
  1977年   10篇
  1976年   8篇
  1974年   9篇
  1968年   6篇
排序方式: 共有5302条查询结果,搜索用时 15 毫秒
101.

Background

The uptake of sulphur-containing compounds plays a pivotal role in the physiology of bacteria that live in aerobic soils where organosulfur compounds such as sulphonates and sulphate esters represent more than 95% of the available sulphur. Until now, no information has been available on the uptake of sulphonates by bacterial plant pathogens, particularly those of the Xanthomonas genus, which encompasses several pathogenic species. In the present study, we characterised the alkanesulphonate uptake system (Ssu) of Xanthomonas axonopodis pv. citri 306 strain (X. citri), the etiological agent of citrus canker.

Methodology/Principal Findings

A single operon-like gene cluster (ssuEDACB) that encodes both the sulphur uptake system and enzymes involved in desulphurisation was detected in the genomes of X. citri and of the closely related species. We characterised X. citri SsuA protein, a periplasmic alkanesulphonate-binding protein that, together with SsuC and SsuB, defines the alkanesulphonate uptake system. The crystal structure of SsuA bound to MOPS, MES and HEPES, which is herein described for the first time, provides evidence for the importance of a conserved dipole in sulphate group coordination, identifies specific amino acids interacting with the sulphate group and shows the presence of a rather large binding pocket that explains the rather wide range of molecules recognised by the protein. Isolation of an isogenic ssuA-knockout derivative of the X. citri 306 strain showed that disruption of alkanesulphonate uptake affects both xanthan gum production and generation of canker lesions in sweet orange leaves.

Conclusions/Significance

The present study unravels unique structural and functional features of the X. citri SsuA protein and provides the first experimental evidence that an ABC uptake system affects the virulence of this phytopathogen.  相似文献   
102.

Background

Severe asthma is associated with T helper (TH) 2 and 17 cell activation, airway neutrophilia and phosphoinositide-3-kinase (PI3K) activation. Asthma exacerbations are commonly caused by rhinovirus (RV) and also associated with PI3K-driven inflammation. Anthraquinone derivatives have been shown to reduce PI3K-mediated AKT phosphorylation in-vitro.

Objective

To determine the anti-inflammatory potential of anthraquinones in-vivo.

Methods

BALB/c mice were sensitized and challenged with crude house dust mite extract to induce allergic airways disease and treated with mitoxantrone and a novel non-cytotoxic anthraquinone derivative. Allergic mice were also infected with RV1B to induce an exacerbation.

Results

Anthraquinone treatment reduced AKT phosphorylation, hypoxia-inducible factor-1α and vascular endothelial growth factor expression, and ameliorated allergen- and RV-induced airways hyprereactivity, neutrophilic and eosinophilic inflammation, cytokine/chemokine expression, mucus hypersecretion, and expression of TH2 proteins in the airways. Anthraquinones also boosted type 1 interferon responses and limited RV replication in the lung.

Conclusion

Non-cytotoxic anthraquinone derivatives may be of therapeutic benefit for the treatment of severe and RV-induced asthma by blocking pro-inflammatory pathways regulated by PI3K/AKT.  相似文献   
103.
IL-27 is an important and non-redundant regulator of effector T cell accumulation in non-lymphoid tissues during infection. Using malaria as a model systemic pro-inflammatory infection, we demonstrate that the aberrant accumulation of CD4+ T cells in the liver of infected IL27R−/− (WSX-1−/−) mice is a result of differences in cellular recruitment, rather than changes in T cell proliferation or cell death. We show that IL-27 both inhibits the migratory capacity of infection-derived CD4+ T cells towards infection-derived liver cells, but also suppresses the production of soluble liver-derived mediator(s) that direct CD4+ T cell movement towards the inflamed tissue. Although CCL4 and CCL5 expression was higher in livers of infected WSX-1−/− mice than infected WT mice, and hepatic CD4+ T cells from WSX-1−/− mice expressed higher levels of CCR5 than cells from WT mice, migration of CD4+ T cells to the liver of WSX-1−/− mice during infection was not controlled by chemokine (R) signalling. However, anti-IL-12p40 treatment reduced migration of CD4+ T cells towards infection-derived liver cells, primarily by abrogating the hepatotropic migratory capacity of T cells, rather than diminishing soluble tissue-derived migratory signals. These results indicate that IL-27R signalling restricts CD4+ T cell accumulation within the liver during infection primarily by suppressing T cell chemotaxis, which may be linked to its capacity to repress Th1 differentiation, as well as by inhibiting the production of soluble, tissue-derived chemotaxins.  相似文献   
104.
The emergence of next-generation sequencing technologies allowed access to the vast amounts of information that are contained in the human genome. This information has contributed to the understanding of individual and population-based variability and improved the understanding of the evolutionary history of different human groups. However, the genome of a representative of the Amerindian populations had not been previously sequenced. Thus, the genome of an individual from a South American tribe was completely sequenced to further the understanding of the genetic variability of Amerindians. A total of 36.8 giga base pairs (Gbp) were sequenced and aligned with the human genome. These Gbp corresponded to 95.92% of the human genome with an estimated miscall rate of 0.0035 per sequenced bp. The data obtained from the alignment were used for SNP (single-nucleotide) and INDEL (insertion-deletion) calling, which resulted in the identification of 502,017 polymorphisms, of which 32,275 were potentially new high-confidence SNPs and 33,795 new INDELs, specific of South Native American populations. The authenticity of the sample as a member of the South Native American populations was confirmed through the analysis of the uniparental (maternal and paternal) lineages. The autosomal comparison distinguished the investigated sample from others continental populations and revealed a close relation to the Eastern Asian populations and Aboriginal Australian. Although, the findings did not discard the classical model of America settlement; it brought new insides to the understanding of the human population history. The present study indicates a remarkable genetic variability in human populations that must still be identified and contributes to the understanding of the genetic variability of South Native American populations and of the human populations history.  相似文献   
105.
The viability of algae-based biodiesel industry depends on the selection of adequate strains in regard to profitable yields and oil quality. This work aimed to bioprospecting and screening 12 microalgae strains by applying, as selective criteria, the volumetric lipid productivity and the fatty acid profiles, used for estimating the biodiesel fuel properties. Volumetric lipid productivity varied among strains from 22.61 to 204.91 mg l?1 day?1. The highest lipid yields were observed for Chlorella (204.91 mg l?1 day1) and Botryococcus strains (112.43 and 98.00 mg l?1 day?1 for Botryococcus braunii and Botryococcus terribilis, respectively). Cluster and principal components analysis analysis applied to fatty acid methyl esters (FAME) profiles discriminated three different microalgae groups according to their potential for biodiesel production. Kirchneriella lunaris, Ankistrodesmus fusiformis, Chlamydocapsa bacillus, and Ankistrodesmus falcatus showed the highest levels of polyunsaturated FAME, which incurs in the production of biodiesels with the lowest (42.47–50.52) cetane number (CN), the highest (101.33–136.97) iodine values (IV), and the lowest oxidation stability. The higher levels of saturated FAME in the oils of Chlamydomonas sp. and Scenedesmus obliquus indicated them as source of biodiesel with higher oxidation stability, higher CN (63.63–64.94), and lower IV (27.34–35.28). The third group, except for the Trebouxyophyceae strains that appeared in isolation, are composed by microalgae that generate biodiesel of intermediate values for CN, IV, and oxidation stability, related to their levels of saturated and monosaturated lipids. Thus, in this research, FAME profiling suggested that the best approach for generating a microalgae-biodiesel of top quality is by mixing the oils of distinct cell cultures.  相似文献   
106.
Guanosine, a guanine-based purine, is recognized as an extracellular signaling molecule that is released from astrocytes and confers neuroprotective effects in several in vivo and in vitro studies. Astrocytes regulate glucose metabolism, glutamate transport, and defense mechanism against oxidative stress. C6 astroglial cells are widely used as an astrocyte-like cell line to study the astrocytic function and signaling pathways. Our previous studies showed that guanosine modulates the glutamate uptake activity, thus avoiding glutamatergic excitotoxicity and protecting neural cells. The goal of this study was to determine the gliopreventive effects of guanosine against glucose deprivation in vitro in cultured C6 cells. Glucose deprivation induced cytotoxicity, an increase in reactive oxygen and nitrogen species (ROS/RNS) levels and lipid peroxidation as well as affected the metabolism of glutamate, which may impair important astrocytic functions. Guanosine prevented glucose deprivation-induced toxicity in C6 cells by modulating oxidative and nitrosative stress and glial responses, such as the glutamate uptake, the glutamine synthetase activity, and the glutathione levels. Glucose deprivation decreased the level of EAAC1, the main glutamate transporter present in C6 cells. Guanosine also prevented this effect, most likely through PKC, PI3K, p38 MAPK, and ERK signaling pathways. Taken together, these results show that guanosine may represent an important mechanism for protection of glial cells against glucose deprivation. Additionally, this study contributes to a more thorough understanding of the glial- and redox-related protective properties of guanosine in astroglial cells.  相似文献   
107.
Encapsulation may provide increased stability and antimicrobial efficiency to bacteriocins. In this work, the antilisterial peptide pediocin was encapsulated in nanovesicles prepared from partially purified soybean phosphatidylcholine. The maintenance of antimicrobial activity and properties of free and encapsulated pediocin was observed during 13 days at 4 °C, and after this period, the encapsulated pediocin retained 50 % its initial activity. The maintenance of the bioactive properties of free and encapsulated pediocin was observed against different species of Listeria, inhibiting Listeria monocytogenes, Listeria innocua and Listeria ivanovii. The size of vesicles containing pediocin was determined by dynamic light scattering as an average of 190 nm, with little change throughout the observation period. Polydispersity index values were around 0.201 and are considered satisfactory, indicating an adequate size distribution of liposomes. The efficiency of encapsulation was 80 %. Considering these results, the protocol used was appropriate for the encapsulation of this bacteriocin. Results demonstrate the production of stable nanoparticulate material. The maintenance of the properties of pediocin encapsulated in liposomes is fundamental to prospect the stability in different conditions of the food matrix.  相似文献   
108.

Introduction

This systematic review examines the relationship between blood loss and clinical signs and explores its use to trigger clinical interventions in the management of obstetric haemorrhage.

Methods

A systematic review of the literature was carried out using a comprehensive search strategy to identify studies presenting data on the relationship of clinical signs & symptoms and blood loss. Methodological quality was assessed using the STROBE checklist and the general guidelines of MOOSE.

Results

30 studies were included and five were performed in women with pregnancy-related haemorrhage (other studies were carried in non-obstetric populations). Heart rate (HR), systolic blood pressure (SBP) and shock index were the parameters most frequently studied. An association between blood loss and HR changes was observed in 22 out of 24 studies, and between blood loss and SBP was observed in 17 out of 23 studies. An association was found in all papers reporting on the relationship of shock index and blood loss. Seven studies have used Receiver Operating Characteristic Curves to determine the accuracy of clinical signs in predicting blood loss. In those studies the AUC ranged from 0.56 to 0.74 for HR, from 0.56 to 0.79 for SBP and from 0.77 to 0.84 for shock index. In some studies, HR, SBP and shock index were associated with increased mortality.

Conclusion

We found a substantial variability in the relationship between blood loss and clinical signs, making it difficult to establish specific cut-off points for clinical signs that could be used as triggers for clinical interventions. However, the shock index can be an accurate indicator of compensatory changes in the cardiovascular system due to blood loss. Considering that most of the evidence included in this systematic review is derived from studies in non-obstetric populations, further research on the use of the shock index in obstetric populations is needed.  相似文献   
109.
This paper presents an industrial scale process for extraction, purification, and isolation of epiisopiloturine (EPI) (2(3H)-Furanone,dihydro-3-(hydroxyphenylmethyl)-4-[(1-methyl-1H-imidazol-4-yl)methyl]-, [3S-[3a(R*),4b]]), which is an alkaloid from jaborandi leaves (Pilocarpus microphyllus Stapf). Additionally for the first time a set of structural and spectroscopic techniques were used to characterize this alkaloid. EPI has shown schistomicidal activity against adults and young forms, as well as the reduction of the egg laying adult worms and low toxicity to mammalian cells (in vitro). At first, the extraction of EPI was done with toluene and methylene chloride to obtain a solution that was alkalinized with ammonium carbonate. The remaining solution was treated in sequence by acidification, filtration and alkalinization. These industrial procedures are necessary in order to remove impurities and subsequent application of the high performance liquid chromatography (HPLC). The HPLC was employed also to remove other alkaloids, to obtain EPI purity higher than 98%. The viability of the method was confirmed through HPLC and electrospray mass spectrometry, that yielded a pseudo molecular ion of m/z equal to 287.1 Da. EPI structure was characterized by single crystal X-ray diffraction (XRD), 1H and 13C nuclear magnetic resonance (NMR) in deuterated methanol/chloroform solution, vibrational spectroscopy and mass coupled thermal analyses. EPI molecule presents a parallel alignment of the benzene and the methyl imidazol ring separated by an interplanar spacing of 3.758 Å indicating a π-π bond interaction. The imidazole alkaloid melts at 225°C and decomposes above 230°C under air. EPI structure was used in theoretical Density Functional Theory calculations, considering the single crystal XRD data in order to simulate the NMR, infrared and Raman spectra of the molecule, and performs the signals attribution.  相似文献   
110.
Combination therapy is being increasingly used as a treatment paradigm for metabolic diseases such as diabetes and obesity. In the peptide therapeutics realm, recent work has highlighted the therapeutic potential of chimeric peptides that act on two distinct receptors, thereby harnessing parallel complementary mechanisms to induce additive or synergistic benefit compared to monotherapy. Here, we extend this hypothesis by linking a known anti-diabetic peptide with an anti-obesity peptide into a novel peptide hybrid, which we termed a phybrid. We report on the synthesis and biological activity of two such phybrids (AC164204 and AC164209), comprised of a glucagon-like peptide-1 receptor (GLP1-R) agonist, and exenatide analog, AC3082, covalently linked to a second generation amylin analog, davalintide. Both molecules acted as full agonists at their cognate receptors in vitro, albeit with reduced potency at the calcitonin receptor indicating slightly perturbed amylin agonism. In obese diabetic Lepob/Lep ob mice sustained infusion of AC164204 and AC164209 reduced glucose and glycated haemoglobin (HbA1c) equivalently but induced greater weight loss relative to exenatide administration alone. Weight loss was similar to that induced by combined administration of exenatide and davalintide. In diet-induced obese rats, both phybrids dose-dependently reduced food intake and body weight to a greater extent than exenatide or davalintide alone, and equal to co-infusion of exenatide and davalintide. Phybrid-mediated and exenatide + davalintide-mediated weight loss was associated with reduced adiposity and preservation of lean mass. These data are the first to provide in vivo proof-of-concept for multi-pathway targeting in metabolic disease via a peptide hybrid, demonstrating that this approach is as effective as co-administration of individual peptides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号