首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7226篇
  免费   560篇
  国内免费   2篇
  2023年   30篇
  2022年   75篇
  2021年   178篇
  2020年   119篇
  2019年   136篇
  2018年   177篇
  2017年   168篇
  2016年   262篇
  2015年   369篇
  2014年   374篇
  2013年   637篇
  2012年   647篇
  2011年   595篇
  2010年   371篇
  2009年   297篇
  2008年   466篇
  2007年   455篇
  2006年   408篇
  2005年   326篇
  2004年   325篇
  2003年   304篇
  2002年   263篇
  2001年   57篇
  2000年   37篇
  1999年   61篇
  1998年   69篇
  1997年   64篇
  1996年   57篇
  1995年   36篇
  1994年   44篇
  1993年   48篇
  1992年   30篇
  1991年   23篇
  1990年   24篇
  1989年   18篇
  1988年   16篇
  1987年   20篇
  1986年   14篇
  1985年   13篇
  1984年   18篇
  1983年   16篇
  1982年   20篇
  1981年   20篇
  1980年   10篇
  1979年   11篇
  1978年   13篇
  1977年   9篇
  1974年   8篇
  1973年   7篇
  1972年   6篇
排序方式: 共有7788条查询结果,搜索用时 46 毫秒
931.
The innate immunity of Drosophila melanogaster is based on cellular and humoral components. Drosophila Helical factor (Hf), is a molecule previously discovered using an in silico approach and whose expression is controlled by the immune deficiency (Imd) pathway. Here we present evidence demonstrating that Hf is an inducible protein constitutively produced by the S2 hemocyte-derived cell line. Hf expression is stimulated by bacterial extracts that specifically trigger the Imd pathway. In absence of any bacterial challenge, the recombinant form of Hf can influence the expression of the antimicrobial peptides (AMPs) defensin but not drosomycin. These data suggest that in vitro Hf is an inducible and immune-regulated factor, with functions comparable to those of secreted vertebrate cytokines.  相似文献   
932.
The SERCA pump, a membrane protein of about 110kDa, transports two Ca(2+) ions per ATP hydrolyzed from the cytoplasm to the lumen of the sarcoplasmic reticulum. In muscle cells, its ability to remove Ca(2+) from the cytosol induces relaxation. The transport mechanism employed by the enzyme from rabbit muscle has been extensively studied, and several crystal structures representing different conformational states are available. However, no structure of the pump from other sources is known. In this paper we describe the crystal structure of the bovine enzyme, crystallized in the E1 conformation and determined at 2.9? resolution. The overall molecular model is very similar to that of the rabbit enzyme, as expected by the high amino acid sequence identity. Nevertheless, the bovine enzyme has reduced catalytic activity with respect to the rabbit enzyme. Subtle structural modifications, in particular in the region of the long loop that protrudes into the SR lumen connecting transmembrane α-helices M7 and M8, may explain the difference.  相似文献   
933.
934.
Bistability is a system-level property, exploited by many biomolecular interaction networks as a key mechanism to accomplish different cellular functions (e.g., differentiation, cell cycle, switch-like response to external stimuli). Bistability has also been experimentally found to occur in the regulatory network of the galactose metabolic pathway in the model organism Saccharomyces cerevisiae. In this yeast, bistability generates a persistent memory of the type of carbon source available in the extracellular medium: under the same experimental conditions, cells previously grown with different nutrients generate different responses and get stably locked into two distinct steady states. The molecular interactions of the GAL regulatory network have been thoroughly dissected through wet-lab experiments; thus, this system provides a formidable benchmark to our ability to characterize and reproduce in silico the behavior of bistable biological systems. To this aim, a number of models have been proposed in the literature; however, we found that they are not able to replicate the persistent memory behavior observed in (Acar et al., 2005 ). The present study proposes a novel model of the GAL regulatory network, which, in addition to reproducing in silico the experimental findings, can be formally analyzed for structural multistability of the network, using chemical reaction network theory (CRNT), and allows the characterization of the domains of attraction (DA). This work provides further insights into the GAL system and proposes an easily generalizable approach to the study of bistability-associated behaviors in biological systems.  相似文献   
935.
Diet has been shown to modulate M(1)dG adduct, a biomarker of oxidative stress and lipid peroxidation. Thus, we analysed the association between diet and M(1)dG in 120 controls and 67 Map Ta Phut industrial estate workers in Rayong, Thailand, to evaluate the influence of fruit and vegetables, and fried and charcoal-grilled/barbecued food consumption on M(1)dG. M(1)dG was decreased in controls reporting to consume 14-17 servings/week of fruit and vegetables (mean ratio [MR]= 0.35, CI 0.18-0.69, p< 0.05). Conversely, a non-statistically significant M(1)dG increment was detected in controls consuming 9-18 servings/week of fried food (MR = 1.33, CI 0.88-2.00, p = 0.168). No effect of charcoal-grilled/barbecued food was found. No effect of diet was observed in workers. An association with smoking was observed in controls (MR = 1.88, CI 1.14-3.10, p < 0.05), but not in workers. M(1)dG can induce mutations and/or methylation changes within the promoter regions of cancer-related genes, thus promotion of healthy eating practices should be recommended.  相似文献   
936.
In the present study, we report synthesis and biological evaluation of the N‐Boc‐protected tripeptides 4a–l and N‐For protected tripeptides 5a–l as new For‐Met‐Leu‐Phe‐OMe (fMLF‐OMe) analogues. All the new ligands are characterized by the C‐terminal Phe residue variously substituted at position 4 of the aromatic ring. The agonism of 5a–l and the antagonism of 4a–l (chemotaxis, superoxide anion production, lysozyme release as well as receptor binding affinity) have been examined on human neutrophils. No synthesized compounds has higher activity than the standard fMLF‐OMe tripeptide to stimulate chemotaxis, although compounds 5a and 5c with ‐CH3 and ‐C(CH3)3, respectively, in position 4 on the aromatic ring, are better than the standard tripeptide to stimulate the production of superoxide anion, in higher concentration. Compounds 4f and 4i , containing ‐F and ‐I in position 4, respectively, on the aromatic ring of phenylalanine, exhibit significant chemotactic antagonism. The influence of the different substitution at the position 4 on the aromatic ring of phenylalanine is discussed. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
937.
Worldwide efforts are underway to develop new antimicrobial agents against bacterial resistance. To identify new compounds with a good antimicrobial profile, we designed and synthesized two series of small cationic antimicrobial peptidomimetics (1–8) containing unusual arginine mimetics (to introduce cationic charges) and several aromatic amino acids (bulky moieties to improve lipophilicity). Both series were screened for in vitro antibacterial activity against a representative panel of Gram‐positive (Staphylococcus aureus and Staphylococcus epidermidis) and Gram‐negative (Escherichia coli and Klebsiella pneumoniae) bacterial strains, and Candida albicans. The biological screening showed that peptidomimetics containing tryptophan residues are endowed with the best antimicrobial activity against S. aureus and S. epidermidis in respect to the other synthesized derivatives (MIC values range 7.5–50 µg/ml). Moreover, small antimicrobial peptidomimetics derivatives 2 and 5 showed an appreciable activity against the tested Gram‐negative bacteria and C. albicans. The most active compounds (1–2 and 5–6) have been tested against Gram‐positive established biofilm, too. Results showed that the biofilm inhibitory concentration values of these compounds were never up to 200 µg/ml. The replacement of tryptophan with phenylalanine or tyrosine resulted in considerable loss of the antibacterial action (compounds 3–4 and 7–8) against both Gram‐positive and Gram‐negative bacterial strains. Furthermore, by evaluating hemolytic activity, the synthesized compounds did not reveal cytotoxic activities, except for compound 5. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
938.
Endometriosis is considered to be an estrogen-dependent inflammatory disease, but its etiology is unclear. Thus far, a mechanistic role for steroid receptor coactivators (SRCs) in the progression of endometriosis has not been elucidated. An SRC-1-null mouse model reveals that the mouse SRC-1 gene has an essential role in endometriosis progression. Notably, a previously unidentified 70-kDa SRC-1 proteolytic isoform is highly elevated both in the endometriotic tissue of mice with surgically induced endometriosis and in endometriotic stromal cells biopsied from patients with endometriosis compared to normal endometrium. Tnf?/? and Mmp9?/? mice with surgically induced endometriosis showed that activation of tumor necrosis factor a (TNF-α)-induced matrix metallopeptidase 9 (MMP9) activity mediates formation of the 70-kDa SRC-1 C-terminal isoform in endometriotic mouse tissue. In contrast to full-length SRC-1, the endometriotic 70-kDa SRC-1 C-terminal fragment prevents TNF-α-mediated apoptosis in human endometrial epithelial cells and causes the epithelial-mesenchymal transition and the invasion of human endometrial cells that are hallmarks of progressive endometriosis. Collectively, the newly identified TNF-α-MMP9-SRC-1 isoform functional axis promotes pathogenic progression of endometriosis.  相似文献   
939.
940.
Epidemiologic and experimental studies suggest that dietary fatty acids influence the development and progression of breast cancer. However, no clear data are present in literature that could demonstrate how n?-?3 PUFA can interfere with breast cancer growth. It is suggested that these fatty acids might change the structure of cell membrane, especially of lipid rafts. During this study we treated MCF-7 and MDA-MB-231 cells with AA, EPA, and DHA to assess if they are incorporated in lipid raft phospholipids and are able to change chemical and physical properties of these structures. Our data demonstrate that PUFA and their metabolites are inserted with different yield in cell membrane microdomains and are able to alter fatty acid composition without decreasing the total percentage of saturated fatty acids that characterize these structures. In particular in MDA-MB-231 cells, that displays the highest content of Chol and saturated fatty acids, we observed the lowest incorporation of DHA, probably for sterical reasons; nevertheless DHA was able to decrease Chol and SM content. Moreover, PUFA are incorporated in breast cancer lipid rafts with different specificity for the phospholipid moiety, in particular PUFA are incorporated in PI, PS, and PC phospholipids that may be relevant to the formation of PUFA metabolites (prostaglandins, prostacyclins, leukotrienes, resolvines, and protectines) of phospholipids deriving second messengers and signal transduction activation. The bio-physical changes after n?-?3 PUFA incubation have also been highlighted by atomic force microscopy. In particular, for both cell lines the DHA treatment produced a decrease of the lipid rafts in the order of about 20-30?%. It is worth noticing that after DHA incorporation lipid rafts exhibit two different height ranges. In fact, some lipid rafts have a higher height of 6-6.5?nm. In conclusion n?-?3 PUFA are able to modify lipid raft biochemical and biophysical features leading to decrease of breast cancer cell proliferation probably through different mechanisms related to acyl chain length and unsaturation. While EPA may contribute to cell apoptosis mainly through decrease of AA concentration in lipid raft phospholipids, DHA may change the biophysical properties of lipid rafts decreasing the content of cholesterol and probably the distribution of key proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号