首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94380篇
  免费   398篇
  国内免费   880篇
  95658篇
  2022年   21篇
  2021年   29篇
  2020年   14篇
  2019年   22篇
  2018年   11858篇
  2017年   10707篇
  2016年   7495篇
  2015年   640篇
  2014年   329篇
  2013年   407篇
  2012年   4316篇
  2011年   12912篇
  2010年   12032篇
  2009年   8268篇
  2008年   9858篇
  2007年   11425篇
  2006年   311篇
  2005年   575篇
  2004年   1020篇
  2003年   1072篇
  2002年   809篇
  2001年   276篇
  2000年   182篇
  1999年   47篇
  1998年   23篇
  1997年   41篇
  1996年   25篇
  1995年   13篇
  1994年   17篇
  1993年   37篇
  1992年   37篇
  1991年   55篇
  1990年   19篇
  1989年   25篇
  1988年   24篇
  1987年   24篇
  1986年   9篇
  1985年   8篇
  1984年   12篇
  1983年   25篇
  1982年   6篇
  1981年   6篇
  1979年   8篇
  1972年   247篇
  1971年   274篇
  1970年   8篇
  1965年   13篇
  1962年   25篇
  1944年   12篇
  1940年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Starfish waste has been shown to be an effective compost material not only in the promotion of plant growth but also in terms of having insecticidal activity. In the present study, plant growth regulation by chemicals from starfish was examined. The aqueous fraction from a hot water extract of the starfish Asterias amurensis Lütken showed plant-growth activity, while the aqueous fraction from a methanol extract inhibited growth of Brassica campestris. The lipophilic fraction from the methanol extract also exhibited a plant growth-promoting effect. The active components from each extract were identified. Asterubine from the hot water extract promoted plant growth. A ceramide from the lipophilic fraction showed root growth promoting effect, and three glucocerebrosides had promotive effects on the entire plant. Asterosaponins were identified as the main growth inhibitors in the aqueous fraction of the methanol extract. These active compounds from starfish waste could be analyzed as potential plant growth regulators in agricultural applications in the future.  相似文献   
102.
This editorial addresses the debate concerning the origin of adult nucleus pulposus cells in the light of profiling studies by Minogue and colleagues. In their report of several marker genes that distinguish nucleus pulposus cells from other related cell types, the authors provide novel insights into the notochordal nature of the former. Together with recently published work, their work lends support to the view that all cells present within the nucleus pulposus are derived from the notochord. Hence, the choice of an animal model for disc research should be based on considerations other than the cell loss and replacement by non-notochordal cells.  相似文献   
103.
104.
105.
106.
107.

Background  

Arsenic contamination is widespread throughout the world and this toxic metalloid is known to cause cancers of organs such as liver, kidney, skin, and lung in human. In spite of a recent surge in arsenic related studies, we are still far from a comprehensive understanding of arsenic uptake, detoxification, and sequestration in plants. Crambe abyssinica, commonly known as 'abyssinian mustard', is a non-food, high biomass oil seed crop that is naturally tolerant to heavy metals. Moreover, it accumulates significantly higher levels of arsenic as compared to other species of the Brassicaceae family. Thus, C. abyssinica has great potential to be utilized as an ideal inedible crop for phytoremediation of heavy metals and metalloids. However, the mechanism of arsenic metabolism in higher plants, including C. abyssinica, remains elusive.  相似文献   
108.
A number of techniques are currently employed for the fractionation of heterogeneous cell populations or for the separation of cells in different phases of their cycle. With the development of osmotically inert colloidal silica particles media, density gradient centrifugation became an established method for the separation and purification of cells and subcellular particles. We have applied this technique to the separation of cycling from resting Friend erythroleukemia cells, to obtain purified populations for further biological assays. The flow cytometric analysis of DNA content of the different fractions obtained by the gradient and stained with Propidium Iodide (PI), showed the S compartment highly concentrated in the 1.073/77 g/ml interface, while the upper levels of the gradient were highly enriched of cells in G1 phase. Moreover, the dual parameter analysis of DNA content by means of Bromodeoxyuridine (BrdUrd) incorporation and PI staining, showed that part of the cells in the 1.067/73 fraction represented the early S phase even if their DNA level, measured on the basis of PI fluorescence was within the diploid cell cluster. This method seems to be suitable to obtain pure cell fractions even when dealing with numerically large populations.  相似文献   
109.

Background  

Meiotic prophase is a critical stage in sexual reproduction. Aberrant chromosome recombination during this stage is a leading cause of human miscarriages and birth defects. However, due to the experimental intractability of mammalian gonads, only a very limited number of meiotic genes have been characterized. Here we aim to identify novel meiotic genes important in human reproduction through computational mining of cross-species and cross-sex time-series expression data from budding yeast, mouse postnatal testis, mouse embryonic ovary, and human fetal ovary.  相似文献   
110.

Background  

Genome sequencing projects have expanded the gap between the amount of known protein sequences and structures. The limitations of current high resolution structure determination methods make it unlikely that this gap will disappear in the near future. Small angle X-ray scattering (SAXS) is an established low resolution method for routinely determining the structure of proteins in solution. The purpose of this study is to develop a method for the efficient calculation of accurate SAXS curves from coarse-grained protein models. Such a method can for example be used to construct a likelihood function, which is paramount for structure determination based on statistical inference.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号