首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1312篇
  免费   80篇
  2023年   7篇
  2022年   8篇
  2021年   24篇
  2020年   20篇
  2019年   28篇
  2018年   19篇
  2017年   24篇
  2016年   44篇
  2015年   52篇
  2014年   55篇
  2013年   73篇
  2012年   98篇
  2011年   83篇
  2010年   47篇
  2009年   39篇
  2008年   73篇
  2007年   72篇
  2006年   68篇
  2005年   65篇
  2004年   73篇
  2003年   57篇
  2002年   52篇
  2001年   19篇
  2000年   9篇
  1999年   18篇
  1998年   15篇
  1997年   8篇
  1996年   11篇
  1995年   9篇
  1994年   11篇
  1993年   6篇
  1992年   12篇
  1991年   20篇
  1990年   17篇
  1989年   11篇
  1988年   17篇
  1987年   12篇
  1986年   9篇
  1985年   12篇
  1983年   7篇
  1982年   5篇
  1981年   6篇
  1979年   5篇
  1978年   6篇
  1977年   6篇
  1976年   5篇
  1975年   6篇
  1970年   7篇
  1969年   9篇
  1965年   6篇
排序方式: 共有1392条查询结果,搜索用时 15 毫秒
971.
Ochratoxin A (OTA), a mycotoxin produced by Aspergillus ochraceus and other moulds, has recently received growing attention because of its carcinogenic, teratogenic and nephrotoxic properties in both humans and farm animals. Nevertheless, with regard to the mechanism of toxicity, the data in the literature are inconclusive. The aim of our work was to verify in human fibroblasts treated with different OTA dosages the involvement of oxidative pathway in the damage mechanism of this mycotoxin and the possible protective effect exerted by cyanidin 3-O-beta-D-glucoside (C3G), an anthocyanin present in pigmented oranges, red wines, fruits and vegetables. The addition of OTA at 25 and 50 microM concentrations for 48 h determined only a slight but significant (P<.05) increase in radical oxygen species, whereas a substantial increase in their production was observed at longer exposure, in particular, when the fibroblasts were treated with 50 microM OTA for 72 h. Under the same experimental conditions, our data showed a significant (P<.05) increase in the rupture of cellular membrane and high damage to genomic DNA, evaluated by single-cell gel electrophoresis (comet assay), thus confirming the involvement of oxidative stress in the OTA genotoxicity in agreement with other studies. Diversely, mitochondrial functionality does not appear influenced by OTA treatment. C3G (0.125, 0.250 mM) added to the cells treated with 50 microM OTA significantly reduced free radical species production and prevented genomic DNA damage.  相似文献   
972.
We analyzed the prevalence, intensity, and medium density of parasitism of Hesperoctenes fumarius infesting Molossus rufus in natural (hollow trees) and anthropogenic roosts (attics) in southeastern Brazil. The prevalence and intensity of infestations were higher in the hollow trees than in the attic roosts. We also noted a relationship between the amount of space available within the roost and the infestation levels of H. fumarius. One advantage of roosting in larger, often man-made, refuges may be the reduction in ectoparasite infestations.  相似文献   
973.
In this paper, we report that cells undergoing metabolic stress conditions may use the ribose moiety of nucleosides as energy source to slow down cellular damage. In fact, the phosphorolytic cleavage of the N-glycosidic bond of nucleosides generates, without energy expense, the phosphorylated pentose, which through pentose phosphate pathway and glycolysis, can be converted to energetic intermediates. In this respect, nucleosides may be considered as energy source, alternative or supplementary to glucose, which may become of primary importance especially in conditions of cellular stress. In accordance with the role of these compounds in energy repletion, we also show that the uptake of nucleosides is increased when the energetic demand of the cell is enhanced. As cell model, we have used a human colon carcinoma cell line, LoVo, and the depletion of ATP, with a concomitant fall in the cell energy charge, has been induced by exclusion of glucose from the medium and pre-incubation with oligomycin, an inhibitor of oxidative phosphorylation. In these conditions of energy starvation, we show that the uptake of 2'-deoxyadenosine in LoVo cells is significantly enhanced, and that the phosphorylated ribose moiety of inosine can be used for energy repletion through anaerobic glycolysis. Our data support previous reports indicating that the phosphorylated ribose stemming from the intracellular catabolism of nucleosides may be used in eukaryots as energy source, and advance our knowledge on the regulation of the uptake of nucleosides in eukaryotic cells.  相似文献   
974.
975.
976.
Extracellular ATP (ATPe) binds to P2X7 receptors (P2X7R) expressed on the surface of cells of hematopoietic lineage, including murine thymocytes. Activation of P2X7R by ATPe results in the opening of cation-specific channels, and prolonged ATPe exposure leads to the formation of non-selective pores enabling transmembrane passage of solutes up to 900 Da. In the presence of ATPe, P2X7R-mediated thymocyte death is due primarily to necrosis/lysis and not apoptosis, as measured by the release of lactate dehydrogenase indicative of a loss of plasma membrane integrity. The present study is focused on the identification of P2X7R signaling mediators in ATP-induced thymocyte necrosis/lysis. Thus, extracellular signal-regulated protein kinase 1/2 (Erk1/2) phosphorylation was found to be required for cell lysis, and both events were independent of ATP-induced calcium influx. P2X7R-dependent thymocyte death involved the chronological activation of Src family tyrosine kinase(s), phosphatidylinositol 3-kinase, the mitogen-activated protein (MAP) kinase(Erk1/2) module, and the proteasome. Although independent of this signaling cascade, non-selective pore formation may modulate ATP-mediated thymocyte death. These results therefore suggest a role for both activation of MAP kinase(Erk1/2) and non-selective pore opening in P2X7R-induced thymocyte death.  相似文献   
977.
Although the contribution of reactive oxygen species to myocardial ischemia is well recognized, the possible intracellular targets, especially at the level of myofibrillar proteins (MP), are not yet fully characterized. To assess the maximal extent of oxidative degradation of proteins, isolated rat hearts were perfused with 1 mM H(2)O(2). Subsequently, the MP maximally oxidative damage was compared with the effects produced by 1) 30 min of no-flow ischemia (I) followed in other hearts by 3 min of reperfusion (I/R); and 2) I/R in the presence of a potent antioxidant N-(2-mercaptopropionyl)glycine (MPG). Samples from the H(2)O(2) group electrophoresed under nonreducing conditions and probed with actin, desmin, or tropomyosin monoclonal antibodies showed high-molecular mass complexes indicative of disulfide cross-bridges along with splitting and thickening of tropomyosin and actin bands, respectively. Only these latter changes could be detected in I/R samples and were prevented by MPG. Carbonyl groups generated by oxidative stress on MP were detected by Western blot analysis (oxyblot) under optimized conditions. The analyses showed one major band corresponding to oxidized actin, the density of which increased 1.2-, 2.8-, and 6.8-fold in I, I/R, and H(2)O(2) groups, respectively. The I/R-induced increase was significantly reduced by MPG. In conclusion, oxidative damage of MP occurs on reperfusion, although at a lower extent than in H(2)O(2) perfused hearts, whereas oxidative modifications could not be detected in ischemic hearts. Furthermore, the inhibition of MP oxidation by MPG might underlie the protective efficacy of antioxidants.  相似文献   
978.
The isochore organization of the mammalian genome comprises a general pattern and some special patterns, the former being characterized by a wider compositional distribution of the DNA fragments. The large majority of the mammalian genomes belong to the former, and only some groups, such as the Myomorpha sub-order of Rodentia, belong to the latter. Here we describe the compositional organization of the pig (Sus scrofa) genome that belongs to the general mammalian pattern. We investigated (i) the compositional distribution of the genes by analysis of their GC3 levels (the GC levels at the third codon positions), and (ii) the correlation between the GC3 value of orthologous genes from pig and other vertebrates (human, calf, mouse, chicken, and Xenopus). As expected, the highest gene concentration corresponded to the H3 isochore family, and the highest GC3 correlations were observed in the pig/human and pig/calf comparisons. Then we identified, by in situ hybridization of the GC-richest H3 isochores, the pig chromosomal regions endowed by the highest gene-density that largely corresponded to the telomeric chromosomal bands. Moreover, we observed that these gene-rich bands are syntenic with the previously identified GC-richest/gene richest H3+ bands of the human chromosomes. At the cell nucleus level, we observed that the gene-dense region corresponded to the more internal compartment, as previously found in human and avian cell nuclei.  相似文献   
979.
Glucose-regulated protein 94 (GRP94/gp96), the endoplasmic reticulum heat shock protein 90 paralog, elicits both innate and adaptive immune responses. Regarding the former, GRP94/gp96 stimulates APC cytokine expression and dendritic cell maturation. The adaptive component of GRP94/gp96 function reflects a proposed peptide-binding activity and, consequently, a role for native GRP94/gp96-peptide complexes in cross-presentation. It is by this mechanism that tumor-derived GRP94/gp96 is thought to suppress tumor growth and metastasis. Recent data have demonstrated that GRP94/gp96-elicited innate immune responses can be sufficient to suppress tumor growth and metastasis. However, the immunological processes activated in response to tumor Ag-negative sources of GRP94/gp96 are currently unknown. We have examined the in vivo immunological response to nontumor sources of GRP94/gp96 and report that administration of syngeneic GRP94/gp96- or GRP94/gp96-N-terminal domain-secreting KBALB fibroblasts to BALB/c mice stimulates CD11b(+) and CD11c(+) APC function and promotes bystander activation of CD4(+) T cell Th1 cytokine production. Only modest activation of CD8(+) T cell or NK cell cytolytic function was observed. The GRP94/gp96-dependent induction of CD4(+) T cell cytokine production was markedly inhibited by carrageenan, indicating an essential role for APC in this response. These results identify the bystander activation of CD4(+) T lymphocytes as a previously unappreciated immunological consequence of GRP94/gp96 administration and demonstrate that GRP94/gp96-elicited alterations in the in vivo cytokine environment influence the development of CD4(+) T cell effector functions, independently of its proposed function as a peptide chaperone.  相似文献   
980.
A liquid membrane electrode that allows the concentration of ethidium ion (Ed(+)) to be measured selectively and accurately in the range of 0.1 microM to 5 mM is made. For Ed(+) concentrations less than 1 microM or more than 0.1 mM, the trend is no longer linear, and the causes of this behavior are discussed. The mean activity coefficient of ethidium bromide exhibits deviations from the Debye-Huckel limiting law that are interpreted in terms of aggregate formation. The stability constants for Ed(2)(2+) and Ed(2)Br(+) are 230 kg mol(-1) and 3.0 x 10(4) kg(2) mol(-2), respectively. In NaCl solutions, clusters involving up to 4 Ed(+) units are detected and their stability constants are evaluated. The intercalation of ethidium into poly(A).poly(U) in 1M NaCl is investigated by the above electrode, and the results are compared with those obtained by spectrophotometry. The data are analyzed in terms of Scatchard plots. The potentiometric method is more accurate than the spectrophotometric one at low values of the binding degree (r) where negative deviations from linearity are observed. The deviations are ascribed to a cooperative behavior rather than to artifacts caused by minor systematic errors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号