首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3990篇
  免费   133篇
  4123篇
  2023年   11篇
  2022年   38篇
  2021年   57篇
  2020年   40篇
  2019年   42篇
  2018年   61篇
  2017年   55篇
  2016年   81篇
  2015年   115篇
  2014年   134篇
  2013年   183篇
  2012年   390篇
  2011年   972篇
  2010年   435篇
  2009年   490篇
  2008年   162篇
  2007年   128篇
  2006年   125篇
  2005年   73篇
  2004年   81篇
  2003年   79篇
  2002年   68篇
  2001年   40篇
  2000年   22篇
  1999年   22篇
  1998年   17篇
  1997年   6篇
  1996年   12篇
  1995年   13篇
  1994年   8篇
  1993年   8篇
  1992年   14篇
  1991年   9篇
  1990年   10篇
  1989年   10篇
  1988年   6篇
  1987年   7篇
  1986年   8篇
  1985年   7篇
  1984年   10篇
  1981年   4篇
  1980年   5篇
  1979年   4篇
  1978年   4篇
  1976年   5篇
  1975年   6篇
  1974年   8篇
  1973年   7篇
  1972年   5篇
  1969年   5篇
排序方式: 共有4123条查询结果,搜索用时 15 毫秒
91.
Herpes simplex virus (HSV) types 1 and 2 are highly prevalent human neurotropic pathogens that cause a variety of diseases, including lethal encephalitis. The relationship between HSV and the host immune system is one of the main determinants of the infection outcome. Chemokines play relevant roles in antiviral response and immunopathology, but the modulation of chemokine function by HSV is not well understood. We have addressed the modulation of chemokine function mediated by HSV. By using surface plasmon resonance and crosslinking assays we show that secreted glycoprotein G (SgG) from both HSV-1 and HSV-2 binds chemokines with high affinity. Chemokine binding activity was also observed in the supernatant of HSV-2 infected cells and in the plasma membrane of cells infected with HSV-1 wild type but not with a gG deficient HSV-1 mutant. Cell-binding and competition experiments indicate that the interaction takes place through the glycosaminoglycan-binding domain of the chemokine. The functional relevance of the interaction was determined both in vitro, by performing transwell assays, time-lapse microscopy, and signal transduction experiments; and in vivo, using the air pouch model of inflammation. Interestingly, and in contrast to what has been observed for previously described viral chemokine binding proteins, HSV SgGs do not inhibit chemokine function. On the contrary, HSV SgGs enhance chemotaxis both in vitro and in vivo through increasing directionality, potency and receptor signaling. This is the first report, to our knowledge, of a viral chemokine binding protein from a human pathogen that increases chemokine function and points towards a previously undescribed strategy of immune modulation mediated by viruses.  相似文献   
92.
Data on fruit abundance and ecological overlap among Ateles belzebuth, Lagothrix lagothricha, Cebus apella, andAlouatta seniculus were gathered during 13 months at Tinigua National Park (Colombia), in an effort to test the following hypotheses concerning competition for fruits. Coexistence is possible because: (1) during periods when fruit availability is limited, the species utilize different resources; and (2) the species have different fruit preferences independent of fruit production in the forest. Differences were found in resource use (diet and habitat) for all four species. Despite these differences, all four devoted large proportions of time feeding on fruit. Fruit abundance influenced their activity patterns. Ninety percent of all interspecific aggressive interactions (TV = 69) were seen in fruiting trees. The first hypothesis was best supported, given that all species significantly increased their intake of the vegetative parts of plants during periods of fruit scarcity. Fruit partitioning during periods of scarcity was observed clearly only for one pair of species (C. apella and L. lagothricha). In general, the second hypothesis was not supported as a mechanism for reducing competition because most fruit species were consumed by more than one primate species. Fruit preferences, however, may be particularly important in explaining differences in niche overlap between the most ecologically similar species: A. belzebuth relied heavily on the fruits of one palm species (Oenocarpus bataud) during periods of fruit scarcity and abundance, while L. lagothricha completely ignored this fruit.  相似文献   
93.
Dominant optic atrophy (DOA) is a hereditary optic neuropathy characterised by decreased visual acuity, colour vision deficits, centro-coecal scotoma and optic nerve pallor. The gene OPA1, encoding a dynamin-related GTPase, has recently been identified within the genetic linkage interval for the major locus for DOA on chromosome 3q28 and shown to harbour genetic aberrations segregating with disease in DOA families. The prevalence of the disorder in Denmark is reported to be the highest of any geographical location, suggestive of a founder effect. In order to establish the genetic basis of disease in a sample of 33 apparently unrelated Danish families, we screened DNA from affected members for OPA1 gene mutations by heteroduplex analysis and direct sequencing. A novel identical mutation in exon 28 (2826delT) was associated with DOA in 14 pedigrees and led to a frameshift and abnormal OPA1 protein -COOH terminus. Haplotype analysis of a region of approximately 1 Mb flanking the OPA1 gene using eight polymorphic markers revealed a common haplotype shared by all 14 patients; this haplotype was markedly over-represented compared with ethnically matched controls. Statistical analysis confirmed significant linkage disequilibrium with DOA over approximately 600 kb encompassing the disease mutation. We have therefore demonstrated that the relatively high frequency of DOA in Denmark is attributable to a founder mutation responsible for approximately 42% of the examined families and suggest that presymptomatic screening for the (2826delT) mutation may facilitate diagnosis and genetic counselling in a significant proportion of DOA patients of Danish ancestry.  相似文献   
94.
The effects of cimetidine (12.5 mg i.m.) and atropine (0.125 mg i.m.) were studied on the basal (BAO) and pentagastrin (6 micrograms X kg-1 s.c.)-stimulated (MAO) gastric acid secretion; the gastric mucosal microbleeding provoked by one-day treatment with indomethacin (4 X 25 mg orally) in patients with chronic disorders of the joints. The extent of the gastric microbleeding was measured by spectrophotometric determination of haemoglobin in gastric lavage fluid. The aims of this study were to determine the doses of cimetidine and atropine in humans without any significant inhibitory effects either on the basal or on the maximal gastric acid output to evaluate the cytoprotective action of these doses of cimetidine and atropine on the indomethacin-induced gastric microbleeding in the man. It was found that cimetidine (12.5 mg i.m.) and atropine (0.125 mg i.m.) did not cause any significant inhibition either of the BAO or of the MAO; indomethacin (4 X 25 mg orally) significantly increased gastric microbleeding in the patients; cimetidine and atropine, in the above doses, were able to prevent significantly indomethacin-induced gastric microbleeding in the patients. These results provide evidence for the existence of gastric cytoprotective effects of cimetidine and atropine in humans.  相似文献   
95.
Summary A total of 122 sera from acute lymphoblastic leukemia (ALL) patients were analyzed for circulating immune complexes (CIC) by two methods: the 125I-C1q binding assay and the polyethylene glycol precipitation test (PEG). The results were correlated with induction, remission and relapse stages of the disease. Using the first method the levels of CIC in induction were 15.18±9.15, with 19/29 positive cases (65.50%), P<0.001 compared with controls. In the remission phase the levels were 9.02±5.62, 11/45 (24.49%) nonsignificant P value, and in relapse they were 16.14±11.17 28/48 (58.33%) P<0.001. The PEG precipitation test results were: 0.33±0.10, 8/22 (36.36%); 0.24±0.11, 10/48 (20.83%) and 0.28±0.10, 6/28 (21.42%), respectively. Thus the values of CIC as measured by PEG in the three clinical of phases ALL did not differ significantly from controls. This contrasts with results obtained by the radioiodinated C1q binding assay, where the incidence of positive values was significantly higher in induction and in relapse and lower in the remission phase. These observations were extended in sequential vertical studies performed in a group of patients. These results suggest that raised CIC detected by the 125I-C1q method may reflect a progressive state in ALL and that quantitation of these immune complexes may provide an adequate biochemical marker for prognosis.  相似文献   
96.
The condensation of DNA by the C-terminal domain of histone H1 has been studied by circular dichroism in physiological salt concentration (0.14 M NaF). As the intact H1 molecule, its C-terminal domain induces the so-called psi state of DNA that is characterized by a nonconservative circular dichroism spectrum which is currently attributed to ordered aggregation of the DNA molecules. On a molar basis, intact H1 and its C-terminal domain give spectra of similar intensity. Neither the globular domain of H1 nor an N-terminal fragment, that includes both the globular and N-terminal domains, has any effect on the conservative circular dichroism of DNA. From these results it is concluded that the condensation of DNA mediated by histone H1 is mainly due to its C-terminal domain. The effect of the salt concentration and the size of DNA molecules on the circular dichroism of the complexes are also examined.  相似文献   
97.
ABC transporters are ubiquitous membrane proteins that translocate solutes across biological membranes at the expense of ATP. In prokaryotic ABC importers, the extracytoplasmic anchoring of the substrate-binding protein (receptor) is emerging as a key determinant for the structural rearrangements in the cytoplasmically exposed ATP-binding cassette domains and in the transmembrane gates during the nucleotide cycle. Here the molecular mechanism of such signaling events was addressed by electron paramagnetic resonance spectroscopy of spin-labeled ATP-binding cassette maltose transporter variants (MalFGK2-E). A series of doubly spin-labeled mutants in the MalF-P2 domain involving positions 92, 205, 239, 252, and 273 and one triple mutant labeled at positions 205/252 in P2 and 83 in the Q-loop of MalK were assayed. The EPR data revealed that the substrate-binding protein MalE is bound to the transporter throughout the transport cycle. Concomitantly with the three conformations of the ATP-binding cassette MalK2, three functionally relevant conformations are found also in the periplasmic MalF-P2 loop, strictly dependent on cytoplasmic nucleotide binding and periplasmic docking of liganded MalE to MalFG. The reciprocal communication across the membrane unveiled here gives first insights into the stimulatory effect of MalE on the ATPase activity, and it is suggested to be an important mechanistic feature of receptor-coupled ABC transporters.  相似文献   
98.
The sarcoglycans are known as an integral subcomplex of the dystrophin glycoprotein complex, the function of which is best characterized in skeletal muscle in relation to muscular dystrophies. Here we demonstrate that the white adipocytes, which share a common precursor with the myocytes, express a cell-specific sarcoglycan complex containing β-, δ-, and ϵ-sarcoglycan. In addition, the adipose sarcoglycan complex associates with sarcospan and laminin binding dystroglycan. Using multiple sarcoglycan null mouse models, we show that loss of α-sarcoglycan has no consequence on the expression of the adipocyte sarcoglycan complex. However, loss of β- or δ-sarcoglycan leads to a concomitant loss of the sarcoglycan complex as well as sarcospan and a dramatic reduction in dystroglycan in adipocytes. We further demonstrate that β-sarcoglycan null mice, which lack the sarcoglycan complex in adipose tissue and skeletal muscle, are glucose-intolerant and exhibit whole body insulin resistance specifically due to impaired insulin-stimulated glucose uptake in skeletal muscles. Thus, our data demonstrate a novel function of the sarcoglycan complex in whole body glucose homeostasis and skeletal muscle metabolism, suggesting that the impairment of the skeletal muscle metabolism influences the pathogenesis of muscular dystrophy.Muscle fat infiltration is recognized as a hallmark pathological feature in dystrophin glycoprotein complex (DGC)3-related muscular dystrophies (1) that include dystrophinopathies (2, 3) and sarcoglycanopathies (LGMD2C-F) (4). In agreement, magnetic resonance imaging measurements of fat infiltration allow accurate assessments of disease severity in Duchenne muscular dystrophy patients (3). Association of adipose tissue development with degenerative/regenerative or atrophic changes in skeletal muscle is also supported by the finding that adipogenesis-competent cells within the skeletal muscle are activated during muscle regeneration (5). However, the molecular mechanism(s) underlying muscle fatty metamorphosis remain unclear.Ectopic fat deposition in skeletal muscles is primarily described in animals and humans with lipodystrophy and sarcopenia. In these conditions, the accumulation of lipids and adipocytes in skeletal muscle is often accompanied by hyperglycemia and insulin resistance (611), both of which are strong indicators of muscle metabolic defects (12, 13) and deregulated adipogenesis (14). Furthermore, both adipose-derived and muscle-derived stem cells differentiate into adipocytes upon exposure to high levels of glucose (15), linking impaired muscle metabolism with muscle fat deposition.It is long held that the biogenesis of a basement membrane takes place in the earliest steps of adipogenesis and that extensive extracellular matrix (ECM) remodeling occurs throughout adipogenesis (16, 17). The concept that cell surface receptors play a role in the regulation of adipogenesis and thus may underlie metabolic disorders just recently emerged with a study of the integrin complexes (18). Given that the DGC in its capacity as an ECM receptor is critical for muscle integrity (19, 20) and that white adipocytes and skeletal muscle cells originate from the same mesenchymal precursor cells (21, 22), we set out to determine whether components of the skeletal muscle DGC are expressed in white adipocytes. Herein, we describe a unique adipose sarcoglycan (SG) complex that includes β-, δ-, and ϵ-SG. This complex is tightly associated with sarcospan (Sspn) and dystroglycan (DG). Moreover, we show that DG functions as a novel ECM receptor in white adipocytes. Because adipose tissue and skeletal muscle play critical roles in the maintenance of normal glucose homeostasis and whole body insulin sensitivity (23), we examined the metabolic consequences of the SG complex disruption in both adipose tissue and skeletal muscle. Using in vivo approaches, we observed that the β-SG null mouse (24), a mouse model of muscular dystrophy, is glucose-intolerant and exhibits whole body insulin resistance specifically due to impaired insulin-stimulated glucose uptake in skeletal muscle.  相似文献   
99.
Endostatin is an endogenous inhibitor of angiogenesis. Although several endothelial cell surface molecules have been reported to interact with endostatin, its molecular mechanism of action is not fully elucidated. We used surface plasmon resonance assays to characterize interactions between endostatin, integrins, and heparin/heparan sulfate. α5β1 and αvβ3 integrins form stable complexes with immobilized endostatin (KD = ∼1.8 × 10−8 m, two-state model). Two arginine residues (Arg27 and Arg139) are crucial for the binding of endostatin to integrins and to heparin/heparan sulfate, suggesting that endostatin would not bind simultaneously to integrins and to heparan sulfate. Experimental data and molecular modeling support endostatin binding to the headpiece of the αvβ3 integrin at the interface between the β-propeller domain of the αv subunit and the βA domain of the β3 subunit. In addition, we report that α5β1 and αvβ3 integrins bind to heparin/heparan sulfate. The ectodomain of the α5β1 integrin binds to haparin with high affinity (KD = 15.5 nm). The direct binding between integrins and heparin/heparan sulfate might explain why both heparan sulfate and α5β1 integrin are required for the localization of endostatin in endothelial cell lipid rafts.Endostatin is an endogenous inhibitor of angiogenesis that inhibits proliferation and migration of endothelial cells (13). This C-fragment of collagen XVIII has also been shown to inhibit 65 different tumor types and appears to down-regulate pathological angiogenesis without side effects (2). Endostatin regulates angiogenesis by complex mechanisms. It modulates embryonic vascular development by enhancing proliferation, migration, and apoptosis (4). It also has a biphasic effect on the inhibition of endothelial cell migration in vitro, and endostatin therapy reveals a U-shaped curve for antitumor activity (5, 6). Short term exposure of endothelial cells to endostatin may be proangiogenic, unlike long term exposure, which is anti-angiogenic (7). The effect of endostatin depends on its concentration and on the type of endothelial cells (8). It exerts the opposite effects on human umbilical vein endothelial cells and on endothelial cells derived from differentiated embryonic stem cells. Furthermore, two different mechanisms (heparin-dependent and heparin-independent) may exist for the anti-proliferative activity of endostatin depending on the growth factor used to induce cell proliferation (fibroblast growth factor 2 or vascular endothelial growth factor). Its anti-proliferative effect on endothelial cells stimulated by fibroblast growth factor 2 is mediated by the binding of endostatin to heparan sulfate (9), whereas endostatin inhibits vascular endothelial growth factor-induced angiogenesis independently of its ability to bind heparin and heparan sulfate (9, 10). The broad range of molecular targets of endostatin suggests that multiple signaling systems are involved in mediating its anti-angiogenic action (11), and although several endothelial cell surface molecules have been reported to interact with endostatin, its molecular mechanisms of action are not as fully elucidated as they are for other endogenous angiogenesis inhibitors (11).Endostatin binds with relatively low affinity to several membrane proteins including α5β1 and αvβ3 integrins (12), heparan sulfate proteoglycans (glypican-1 and -4) (13), and KDR/Flk1/vascular endothelial growth factor receptor 2 (14), but no high affinity receptor(s) has been identified so far. The identification of molecular interactions established by endostatin at the cell surface is a first step toward the understanding of the mechanisms by which endostatin regulates angiogenesis. We have previously characterized the binding of endostatin to heparan sulfate chains (9). In the present study we have focused on characterizing the interactions between endostatin, α5β1, αvβ3, and αvβ5 integrins and heparan sulfate. Although interactions between several integrins and endostatin have been studied previously in solid phase assays (12) and in cell models (12, 15, 16), no molecular data are available on the binding site of endostatin to the integrins. We found that two arginine residues of endostatin (Arg27 and Arg139) participate in binding to integrins and to heparan sulfate, suggesting that endostatin is not able to bind simultaneously to these molecules displayed at the cell surface. Furthermore, we have demonstrated that α5β1, αvβ3, and αvβ5 integrins bind to heparan sulfate. This may explain why both heparan sulfate and α5β1 integrins are required for the localization of endostatin in lipid rafts, in support of the model proposed by Wickström et al. (15).  相似文献   
100.
Ferredoxin (Fd) is the major iron-containing protein in photosynthetic organisms and is central to reductive metabolism in the chloroplast. The Chlamydomonas reinhardtii genome encodes six plant type [Fe2S2] ferredoxins, products of PETF, FDX2–FDX6. We performed the functional analysis of these ferredoxins by localizing Fd, Fdx2, Fdx3, and Fdx6 to the chloroplast by using isoform-specific antibodies and monitoring the pattern of gene expression by iron and copper nutrition, nitrogen source, and hydrogen peroxide stress. In addition, we also measured the midpoint redox potentials of Fd and Fdx2 and determined the kinetic parameters of their reactions with several ferredoxin-interacting proteins, namely nitrite reductase, Fd:NADP+ oxidoreductase, and Fd:thioredoxin reductase. We found that each of the FDX genes is differently regulated in response to changes in nutrient supply. Moreover, we show that Fdx2 (Em = −321 mV), whose expression is regulated by nitrate, is a more efficient electron donor to nitrite reductase relative to Fd. Overall, the results suggest that each ferredoxin isoform has substrate specificity and that the presence of multiple ferredoxin isoforms allows for the allocation of reducing power to specific metabolic pathways in the chloroplast under various growth conditions.Ferredoxins are small (∼11,000-kDa), soluble, iron-sulfur cluster-containing proteins with strongly negative redox potentials (−350 to −450 mV) that function as electron donors at reductive steps in various metabolic pathways (13). In photosynthetic organisms, the well studied ferredoxin (Fd4; the product of the PETF gene) is the most abundant iron-containing protein in the chloroplast and is central to the distribution of photosynthetically derived reductive power (4).The most well known Fd-dependent reaction is the transfer of electrons from photosystem I (PSI) to NADPH, catalyzed by Fd:NADP+ oxidoreductase (FNR). The NADPH produced by this reaction donates electrons to the only reductant-requiring step in the Calvin cycle and other steps in anabolic pathways that require NADPH as reductant. In addition, reduced Fd directly donates electrons to other metabolic pathways by interacting with various enzymes in the chloroplast. This includes Fd:thioredoxin reductase (FTR), which converts a light-driven electron signal into a thiol signal that is transmitted to thioredoxins (TRXs) present in the plastid as different types (or different isoforms). Once reduced, TRXs interact with specific disulfide bonds on target enzymes, modulating their activities (5). Other Fd targets include hydrogenase, which is responsible for hydrogen production in anaerobic conditions in green algae; glutamine-oxoglutarate amidotransferase in amino acid synthesis; nitrite and sulfite reductases in nitrate and sulfate assimilation, respectively; stearoyl-ACP Δ9-desaturase in fatty acid desaturation; and phycocyanobilin:Fd oxidoreductase in synthesis of phytochromobilin (6). Fd also functions in non-photosynthetic cells. Here, FNR catalyzes the reduction of Fd by NADPH produced in the oxidative pentose phosphate pathway, enabling Fd-dependent metabolism to occur in the dark (7, 8).The single-celled green alga, Chlamydomonas reinhardtii is an excellent reference organism for studying both metabolic adaptation to nutrient stress and photosynthesis (913). The Chlamydomonas genome encodes six highly related plant type ferredoxin genes (9). Until recently, only the major photosynthetic ferredoxin, Fd (encoded by PETF), which mediates electron transfer between PSI and FNR, had been characterized in detail (14).Many land plants are known to have multiple ferredoxins. Typically, they are differently localized on the basis of their function. Photosynthetic ferredoxins reduce NADP+ at a faster rate and are localized to the leaves, whereas non-photosynthetic ferredoxins are more efficiently reduced by NADPH and are localized to the roots. Arabidopsis thaliana has a total of six ferredoxin isoforms (15). Of these, two are photosynthetic and localized in the leaves. The most abundant, AtFd2, is involved in linear electron flow, and the less abundant (5% of the ferredoxin pool), AtFd1, has been implicated in cyclic electron flow (16). There is one non-photosynthetic ferredoxin located in the roots, AtFd3, which is nitrate-inducible. This protein has higher electron transfer activity with sulfite reductase in in vitro assays compared with other Arabidopsis ferredoxin isoforms, suggesting in vivo function of AtFd3 in nitrate and sulfate assimilation (15, 17). In addition, there is one evolutionarily distant ferredoxin, AtFd4, of unknown function with a more positive redox potential present in the leaves and two other proteins which are “ferredoxin-like” and uncharacterized (15). Zea mays has four ferredoxin isoforms, two photosynthetic and two non-photosynthetic (18). One of the non-photosynthetic isoforms is specifically induced by nitrite, suggestive of a role in nitrate metabolism (19). A cyanobacterium, Anabaena 7120, has two ferredoxins, vegetative and heterocyst type (by analogy to leaf and root types, respectively). The heterocyst type is present only in cells that have differentiated into nitrogen-fixing cells, indicating that this form may serve to transfer electrons to nitrogenase (20).We hypothesize that the presence of as many as six ferredoxin isoforms in a single-celled organism like C. reinhardtii allows for the differential regulation of each isoform and therefore the prioritization of reducing power toward certain metabolic pathways under changing environmental conditions. To test this hypothesis, expression of the genes (PETF and FDX2–FDX6) encoding the six ferredoxin isoforms in Chlamydomonas reinhardtii was monitored under various conditions in which well characterized ferredoxin-dependent enzymes are known to be expressed. In addition, we also analyzed the interaction of Fd and Fdx2 with several ferredoxin-interacting proteins, such as NiR, FNR, and FTR, and determined the kinetic parameters of the corresponding reactions.We found that each of the FDX genes is indeed differently regulated in response to changes in nutrient supply. In the case of FDX2 whose product is most similar to classical Fd, we suggest that it has specificity for nitrite reductase based on its pattern of expression and activity with nitrite reductase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号