首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   1篇
  2021年   2篇
  2020年   2篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   4篇
  2014年   5篇
  2013年   3篇
  2012年   6篇
  2011年   10篇
  2010年   4篇
  2009年   2篇
  2008年   6篇
  2007年   5篇
  2006年   1篇
  2005年   1篇
  2004年   4篇
  2003年   2篇
  2002年   4篇
排序方式: 共有69条查询结果,搜索用时 15 毫秒
11.
The past year has marked the most devastating Ebola outbreak the world has ever witnessed, with over 28,000 cases and over 11,000 deaths. Ebola virus (EBOV) has now been around for almost 50 years. In this review, we discuss past and present outbreaks of EBOV and how those variants evolved over time. We explore and discuss selective pressures that drive the evolution of different Ebola variants, and how they may modify the efficacy of therapeutic treatments and vaccines currently being developed. Finally, given the unprecedented size and spread of the outbreak, as well as the extended period of replication in human hosts, specific attention is given to the 2014–2015 West African outbreak variant (Makona).  相似文献   
12.
Cell motility is important for many developmental and physiological processes. Motility arises from interactions between physical forces at the cell surface membrane and the biochemical reactions that control the actin cytoskeleton. To computationally analyze how these factors interact, we built a three-dimensional stochastic model of the experimentally observed isotropic spreading phase of mammalian fibroblasts. The multiscale model is composed at the microscopic levels of three actin filament remodeling reactions that occur stochastically in space and time, and these reactions are regulated by the membrane forces due to membrane surface resistance (load) and bending energy. The macroscopic output of the model (isotropic spreading of the whole cell) occurs due to the movement of the leading edge, resulting solely from membrane force-constrained biochemical reactions. Numerical simulations indicate that our model qualitatively captures the experimentally observed isotropic cell-spreading behavior. The model predicts that increasing the capping protein concentration will lead to a proportional decrease in the spread radius of the cell. This prediction was experimentally confirmed with the use of Cytochalasin D, which caps growing actin filaments. Similarly, the predicted effect of actin monomer concentration was experimentally verified by using Latrunculin A. Parameter variation analyses indicate that membrane physical forces control cell shape during spreading, whereas the biochemical reactions underlying actin cytoskeleton dynamics control cell size (i.e., the rate of spreading). Thus, during cell spreading, a balance between the biochemical and biophysical properties determines the cell size and shape. These mechanistic insights can provide a format for understanding how force and chemical signals together modulate cellular regulatory networks to control cell motility.  相似文献   
13.
To study the effects of microgravity on the mechanisms involved in the regulation of body hydrous status, total body water (TBW), plasma volume (PV), and its main regulating hormones (plasma renin, aldosterone, atrial natriuretic peptide (ANP), anti-diuretic hormone (ADH)) were determined, by isotopic dilution, Dill and Costill's formula, and radio-immunologic dosages, in 9 male subjects submitted to a 90-d head-down bed rest (HDBR). ADH was determined in 24 h urinary collection as well as osmolality, sodium, and potassium. Body mass decreased (-2.8 +/- 0.8 kg) as well as TBW(-7.2% +/- 0.9%, i.e., -2.6 +/- 0.7 kg) and PV (-4.7% +/- 1.8%). Renin and aldosterone were enhanced (+109.0% +/- 15.4% and +87.2% +/- 38.9%, respectively). Simultaneously, we observed a decrease in ANP (-33.2% +/- 20.4%). Other variables, including ADH, were not affected by HDBR. Body mass and TBW decrease (and consequently lean body mass) are associated with muscle atrophy. Renin, aldostrerone, and ANP modifications are well explained by the decrease in PV, which was not enough to induce ADH changes. It suggests that in man, the main regulatory factor for ADH secretion is osmolality, when PV is modestly and progressively decreased without arterial pressure modification, which was the case in the present protocol.  相似文献   
14.
  • 1 The development of integrated pest management strategies requires that the semi‐natural habitats scattered across the landscape are taken into account. Particular determinants of insect pest abundance in overwintering habitats just before they migrate onto crops appear to be poorly known and of crucial importance for understanding patterns of crop colonization and pest population dynamics at the landscape scale.
  • 2 The emergence of pollen beetle Meligethes aeneus F. was studied in grassland, woodland edge and woodland interior over a 3‐year survey in France using macro‐emergence traps. A suite of variables at the local and the landscape scale was assessed for each trap, aiming to identify potential relevant habitat indicators. The effects of habitat characteristics were evaluated using partial least square regressions.
  • 3 It was found that M. aeneus can overwinter in all types of habitat but that particular habitat characteristics at the local and landscape scales may explain their abundance in overwintering sites more than the types of habitat: relative altitude, litter thickness, soil moisture and proximity to the previous year's oilseed rape fields appear to be positively correlated with abundance of adults over the 3 years.
  • 4 Hence, the abundance of emerged pollen beetles depends on both the landscape configuration of the previous year's oilseed rape fields around overwintering sites and local habitat characteristics. Landscape configuration may determine population flow towards overwintering sites in the late summer, and local habitat characteristics may influence survival rates during the winter. The findings of the present study provide valuable insight into the role of semi‐natural habitats as a source of pests, patterns of crop colonization in the spring, and the influence of landscape on pollen beetle abundance.
  相似文献   
15.
In a context of growing resistance to classical antifungal therapy, the design of new drugs targeting alternative pathways is highly expected. Benzofuro[3,2-d]pyrimidine derivatives, derived from (?)-cercosporamide, were synthesized and evaluated as potential Candida albicans PKC inhibitors in the aim of restoring susceptibility to azole treatment. Co-administration assay of benzofuropyrimidinedione 23 and fluconazole highlighted a synergistic effect on inhibition of cell growth of a Candida albicans resistant strain.  相似文献   
16.
Morphogenesis requires dynamic coordination between cell–cell adhesion and the cytoskeleton to allow cells to change shape and move without losing tissue integrity. We used genetic tools and superresolution microscopy in a simple model epithelial cell line to define how the molecular architecture of cell–cell zonula adherens (ZA) is modified in response to elevated contractility, and how these cells maintain tissue integrity. We previously found that depleting zonula occludens 1 (ZO-1) family proteins in MDCK cells induces a highly organized contractile actomyosin array at the ZA. We find that ZO knockdown elevates contractility via a Shroom3/Rho-associated, coiled-coil containing protein kinase (ROCK) pathway. Our data suggest that each bicellular border is an independent contractile unit, with actin cables anchored end-on to cadherin complexes at tricellular junctions. Cells respond to elevated contractility by increasing junctional afadin. Although ZO/afadin knockdown did not prevent contractile array assembly, it dramatically altered cell shape and barrier function in response to elevated contractility. We propose that afadin acts as a robust protein scaffold that maintains ZA architecture at tricellular junctions.  相似文献   
17.
Sani MA  Gehman JD  Separovic F 《FEBS letters》2011,585(5):749-754
While neuronal membranes are proposed to be the primary target of amyloid plaques, the effect of phospholipids on fibril formation kinetics and morphology has not yet been resolved. We report that interaction of various compositions with neuronal mimics promoted different processes of fibril formation: negatively charged surfaces increased the lag time and elongation rate in thioflavin T assays, while brain total lipid extract had an opposite effect compared to that in the absence of lipid. Electron microscopy showed thin and elongated fibrils when the peptide was incubated with anionic lipids, while neutral surfaces promoted coarse and small fibrils. Circular dichroism and thioflavin T assays confirmed an initially unstructured peptide, and measured its transition to an aggregated beta-sheet conformation.  相似文献   
18.
The cardiac cycle imposes a mechanical stress that dilates elastic carotid arteries, while shear stress largely contributes to the endothelium-dependent dilation of downstream cerebral arteries. In the presence of dyslipidemia, carotid arteries stiffen while the endothelial function declines. We reasoned that stiffening of carotid arteries would be prevented by reducing resting heart rate (HR), while improving the endothelial function would regulate cerebral artery compliance and function. Thus we treated or not 3-mo-old male atherosclerotic mice (ATX; LDLr(-/-):hApoB(+/+)) for 3 mo with the sinoatrial pacemaker current inhibitor ivabradine (IVA), the β-blocker metoprolol (METO), or subjected mice to voluntary physical training (PT). Arterial (carotid and cerebral artery) compliance and endothelium-dependent flow-mediated cerebral dilation were measured in isolated pressurized arteries. IVA and METO similarly reduced (P < 0.05) 24-h HR by ≈15%, while PT had no impact. As expected, carotid artery stiffness increased (P < 0.05) in ATX mice compared with wild-type mice, while cerebral artery stiffness decreased (P < 0.05); this paradoxical increase in cerebrovascular compliance was associated with endothelial dysfunction and an augmented metalloproteinase-9 (MMP-9) activity (P < 0.05), without changing the lipid composition of the wall. Reducing HR (IVA and METO) limited carotid artery stiffening, but plaque progression was prevented by IVA only. In contrast, IVA maintained and PT improved cerebral endothelial nitric oxide synthase-dependent flow-mediated dilation and wall compliance, and both interventions reduced MMP-9 activity (P < 0.05); METO worsened endothelial dysfunction and compliance and did not reduce MMP-9 activity. In conclusion, HR-dependent mechanical stress contributes to carotid artery wall stiffening in severely dyslipidemic mice while cerebrovascular compliance is mostly regulated by the endothelium.  相似文献   
19.
20.
Lumbar intervertebral disc repair is an important tissue-engineering research area. In creating an in vivo rat model to evaluate repair techniques, the authors developed a surgical transperitoneal approach that permits the easy exposure of four lumbar vertebral bodies with no surgery-related peri- or postoperative complications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号