首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12612篇
  免费   1023篇
  国内免费   9篇
  13644篇
  2023年   51篇
  2022年   99篇
  2021年   233篇
  2020年   134篇
  2019年   201篇
  2018年   238篇
  2017年   218篇
  2016年   314篇
  2015年   607篇
  2014年   636篇
  2013年   771篇
  2012年   1053篇
  2011年   1015篇
  2010年   634篇
  2009年   584篇
  2008年   817篇
  2007年   841篇
  2006年   721篇
  2005年   717篇
  2004年   679篇
  2003年   630篇
  2002年   636篇
  2001年   116篇
  2000年   76篇
  1999年   127篇
  1998年   153篇
  1997年   125篇
  1996年   113篇
  1995年   115篇
  1994年   98篇
  1993年   75篇
  1992年   84篇
  1991年   54篇
  1990年   58篇
  1989年   60篇
  1988年   33篇
  1987年   36篇
  1986年   39篇
  1985年   38篇
  1984年   48篇
  1983年   34篇
  1982年   59篇
  1981年   39篇
  1980年   43篇
  1979年   27篇
  1978年   31篇
  1977年   32篇
  1976年   18篇
  1975年   17篇
  1973年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
151.
The development of many organs, including the lung, depends upon a process known as branching morphogenesis, in which a simple epithelial bud gives rise to a complex tree-like system of tubes specialized for the transport of gas or fluids. Previous studies on lung development have highlighted a role for fibroblast growth factors (FGFs), made by the mesodermal cells, in promoting the proliferation, budding, and chemotaxis of the epithelial endoderm. Here, by using a three-dimensional culture system, we provide evidence for a novel role for Netrins, best known as axonal guidance molecules, in modulating the morphogenetic response of lung endoderm to exogenous FGFs. This effect involves inhibition of localized changes in cell shape and phosphorylation of the intracellular mitogen-activated protein kinase(s) (ERK1/2, for extracellular signal-regulated kinase-1 and -2), elicited by exogenous FGFs. The temporal and spatial expression of netrin 1, netrin 4, and Unc5b genes and the localization of Netrin-4 protein in vivo suggest a model in which Netrins in the basal lamina locally modulate and fine-tune the outgrowth and shape of emergent epithelial buds.  相似文献   
152.
153.
In this study, activation of the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signalling pathway was analyzed in proliferating rat hepatocytes both in vivo after partial hepatectomy and in vitro following epidermal growth factor (EGF)-pyruvate stimulation. First, a biphasic MEK/ERK activation was evidenced in G(1) phase of hepatocytes from regenerating liver but not from sham-operated control animals. One occurred in early G(1) (30 min to 4 h), and the other occurred in mid-late G(1), peaking at around 10.5 h. Interestingly, the mid-late G(1) activation peak was located just before cyclin D1 induction in both in vivo and in vitro models. Second, the biological role of the MEK/ERK cascade activation in hepatocyte progression through the G(1)/S transition was assessed by adding a MEK inhibitor (PD 98059) to EGF-pyruvate-stimulated hepatocytes in primary culture. In the presence of MEK inhibitor, cyclin D1 mRNA accumulation was inhibited, DNA replication was totally abolished, and the MEK1 isoform was preferentially targeted by this inhibition. This effect was dose dependent and completely reversed by removing the MEK inhibitor. Furthermore, transient transfection of hepatocytes with activated MEK1 construct resulted in increased cyclin D1 mRNA accumulation. Third, a correlation between the mid-late G(1) MEK/ERK activation in hepatocytes in vivo after partial hepatectomy and the mitogen-independent proliferation capacity of these cells in vitro was established. Among hepatocytes isolated either 5, 7, 9, 12 or 15 h after partial hepatectomy, only those isolated from 12- and 15-h regenerating livers were able to replicate DNA without additional growth stimulation in vitro. In addition, PD 98059 intravenous administration in vivo, before MEK activation, was able to inhibit DNA replication in hepatocytes from regenerating livers. Taken together, these results show that (i) early induction of the MEK/ERK cascade is restricted to hepatocytes from hepatectomized animals, allowing an early distinction of primed hepatocytes from those returning to quiescence, and (ii) mid-late G(1) MEK/ERK activation is mainly associated with cyclin D1 accumulation which leads to mitogen-independent progression of hepatocytes to S phase. These results allow us to point to a growth factor dependency in mid-late G(1) phase of proliferating hepatocytes in vivo as observed in vitro in proliferating hepatocytes and argue for a crucial role of the MEK/ERK cascade signalling pathway.  相似文献   
154.
155.
The intrinsic and inducible phenoloxidase (PO) activity of Rapana thomasiana hemocyanin (RtH) and its substructures were studied. With catechol as substrate, a weak o-diPO activity was measured for the didecameric RtH and its subunits. Some activation of the o-diPO activity of RtH was achieved by limited treatment with subtilisin and by incubation of RtH with 2.9 mM sodium dodecyl sulphate (SDS), suggesting an enhanced substrate access to the active sites. The highest artificial induction of o-diPO activity in RtH, however, was obtained by lyophilization of the protein. This is ascribed to conformational changes during the lyophilization process of the didecameric RtH molecules, affecting the accessibility of the active sites. These conformational changes must be very small, since Fourier-transform infrared and circular dichroism spectroscopies did not reveal any changes in secondary structure of lyophilized RtH. The difference in accessibility of the copper containing active site for substrates between catechol oxidase and functional unit RtH2-e was demonstrated by molecular modeling and surface area accessibility calculations. The low level of intrinsic PO activity in the investigated hemocyanin is related to the inaccessibility of the binuclear copper active sites to the substrates.  相似文献   
156.
Relative quantification methods have dominated the quantitative proteomics field. There is a need, however, to conduct absolute quantification studies to accurately model and understand the complex molecular biology that results in proteome variability among biological samples. A new method of absolute quantification of proteins is described. This method is based on the discovery of an unexpected relationship between MS signal response and protein concentration: the average MS signal response for the three most intense tryptic peptides per mole of protein is constant within a coefficient of variation of less than +/-10%. Given an internal standard, this relationship is used to calculate a universal signal response factor. The universal signal response factor (counts/mol) was shown to be the same for all proteins tested in this study. A controlled set of six exogenous proteins of varying concentrations was studied in the absence and presence of human serum. The absolute quantity of the standard proteins was determined with a relative error of less than +/-15%. The average MS signal responses of the three most intense peptides from each protein were plotted against their calculated protein concentrations, and this plot resulted in a linear relationship with an R(2) value of 0.9939. The analyses were applied to determine the absolute concentration of 11 common serum proteins, and these concentrations were then compared with known values available in the literature. Additionally within an unfractionated Escherichia coli lysate, a subset of identified proteins known to exist as functional complexes was studied. The calculated absolute quantities were used to accurately determine their stoichiometry.  相似文献   
157.
158.
The kinetochore is a multi‐protein structure assembled on eukaryotic centromeres mediating chromosome attachment to spindle microtubules. Here we identified the kinetochore proteins Nuf2 and Ndc80 in the apicomplexan parasite Toxoplasma gondii. Localization revealed that kinetochores remain clustered throughout the cell cycle and colocalize with clustered centromeres at the centrocone, a structure containing the spindle pole embedded in the nuclear envelope. Pharmacological disruption of microtubules resulted in partial loss of some kinetochore and centromere clustering, indicating microtubules are necessary but not strictly required for kinetochore clustering. Generation of a TgNuf2 conditional knock‐down strain revealed it is essential for chromosome segregation, but dispensable for centromere clustering. The centromeres actually remained associated with the centrocone suggesting microtubule binding is not required for their interaction with the spindle pole. The most striking observation upon TgNuf2 depletion was that the centrosome behaved normally, but that it lost its association with the centrocone. This suggests that microtubules are essential to maintain contact between the centrosome and chromosomes, and this interaction is critical for the partitioning of the nuclei into the two daughter parasites. Finally, genetic complementation experiments with mutated TgNuf2 constructs highlighted an apicomplexan‐specific motif with a putative role in nuclear localization.  相似文献   
159.
Movement through the extracellular matrix (ECM) requires cells to degrade ECM components, primarily through the action of matrix metalloproteinases (MMPs). Membrane type 1–matrix metalloproteinase (MT1-MMP) has an essential role in matrix degradation and cell invasion and localizes to subcellular degradative structures termed invadopodia. Trafficking of MT1-MMP to invadopodia is required for the function of these structures, and here we examine the role of N-ethylmaleimide–sensitive factor–activating protein receptor (SNARE)–mediated membrane traffic in the transport of MT1-MMP to invadopodia. During invadopodium formation in MDA-MB-231 human breast cancer cells, increased association of SNAP23, Syntaxin4, and vesicle-associated membrane protein 7 (VAMP7) is detected by coimmunoprecipitation. Blocking the function of these SNAREs perturbs invadopodium-based ECM degradation and cell invasion. Increased level of SNAP23-Syntaxin4-VAMP7 interaction correlates with decreased Syntaxin4 phosphorylation. These results reveal an important role for SNARE-regulated trafficking of MT1-MMP to invadopodia during cellular invasion of ECM.  相似文献   
160.
The chemical uncoupler 2,4-dinitrophenol (DNP) was an effective and widely used weight loss drug in the early 1930s. However, the physiology of DNP has not been studied in detail because toxicity, including hyperthermia and death, reduced interest in the clinical use of chemical uncouplers. To investigate DNP action, mice fed a high fat diet and housed at 30 °C (to minimize facultative thermogenesis) were treated with 800 mg/liter DNP in drinking water. DNP treatment increased energy expenditure by ∼17%, but did not change food intake. DNP-treated mice weighed 26% less than controls after 2 months of treatment due to decreased fat mass, without a change in lean mass. DNP improved glucose tolerance and reduced hepatic steatosis without observed toxicity. DNP treatment also reduced circulating T3 and T4 levels, Ucp1 expression, and brown adipose tissue activity, demonstrating that DNP-mediated heat generation substituted for brown adipose tissue thermogenesis. At 22 °C, a typical vivarium temperature that is below thermoneutrality, DNP treatment had no effect on body weight, adiposity, or glucose homeostasis. Thus, environmental temperature should be considered when assessing an anti-obesity drug in mice, particularly agents acting on energy expenditure. Furthermore, the beneficial effects of DNP suggest that chemical uncouplers deserve further investigation for the treatment of obesity and its comorbidities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号