首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13012篇
  免费   1044篇
  国内免费   9篇
  14065篇
  2023年   51篇
  2022年   99篇
  2021年   239篇
  2020年   135篇
  2019年   204篇
  2018年   250篇
  2017年   221篇
  2016年   314篇
  2015年   612篇
  2014年   645篇
  2013年   787篇
  2012年   1078篇
  2011年   1034篇
  2010年   642篇
  2009年   593篇
  2008年   837篇
  2007年   855篇
  2006年   738篇
  2005年   736篇
  2004年   701篇
  2003年   646篇
  2002年   653篇
  2001年   122篇
  2000年   83篇
  1999年   134篇
  1998年   163篇
  1997年   130篇
  1996年   118篇
  1995年   122篇
  1994年   104篇
  1993年   83篇
  1992年   92篇
  1991年   62篇
  1990年   64篇
  1989年   68篇
  1988年   37篇
  1987年   40篇
  1986年   46篇
  1985年   42篇
  1984年   52篇
  1983年   35篇
  1982年   62篇
  1981年   43篇
  1980年   44篇
  1979年   32篇
  1978年   36篇
  1977年   37篇
  1976年   22篇
  1975年   21篇
  1973年   15篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Dimethylsulfoniopropionate, an osmolyte of marine algae, is thought to be the major precursor of dimethyl sulfide, which plays a dominant role in biogenic sulfur emission. The marine sulfate-reducing bacterium Desulfobacterium strain PM4 was found to degrade dimethylsulfoniopropionate to 3-S-methylmercaptopropionate. The oxidation of one of the methyl groups of dimethylsulfoniopropionate was coupled to the reduction of sulfate; this process is similar to the degradation betaine to dimethylglycine which was described earlier for the same strain. Desulfobacterium PM4 is the first example of an anaerobic marine bacterium that is able to demethylate dimethylsulfoniopropionate.Abbreviations DMSP dimethylsulfoniopropionate - DMS dimethyl sulfide - MMPA 3-S-methylmercaptopropionate  相似文献   
92.
93.
The acrosomal status of wallaby spermatozoa was evaluated by light and electron microscopy after incubation in 1–100 μM lysophosphatidylcholine (LPC) for up to 120 min. Treatment with 1 and 10 μM LPC for 120 min did not lead to acrosomal loss, or detectable alteration to the acrosome, as detected by Bryan's staining and light microscopy. Incubation with 25 μM LPC had little effect on acrosomal loss, however statistically significant changes (P < 0.05) in the acrosomal matrix (altered) were detected after 10-min incubation by light microscopy. Around 50% of acrosomes were altered after 20-min incubation in 50 μM LPC (P < 0.001), and 40% of spermatozoa had lost their acrosome after 60-min incubation (P < 0.001). Treatment with 75 and 100 μM LPC led to rapid acrosomal loss from around 50% of spermatozoa within 10 min (P < 0.001), and by 60 min acrosomal loss was 70–80%. LPC, like the diacylglycerol DiC8 (1,2-di-octanoyl-sn-glycerol), is thus an effective agent to induce loss of the relatively stable wallaby sperm acrosome, and it also induces changes within the acrosomal matrix. Ultrastructure of the LPC-treated spermatozoa revealed that the plasma membrane and the acrosomal membranes were disrupted in a manner similar to that seen after detergent treatment (Triton X-100). There was no evidence of point fusion between the plasma membrane overlying the acrosome and the outer acrosomal membrane. The plasma membrane was the first structure to disappear from the spermatozoa. The acrosomal membranes and matrix showed increasing disruption with time and LPC concentration. Wallaby spermatozoa incubated with LPC at concentrations that induced significant acrosomal loss also underwent a rapid decline in motility that suggested that acrosomal loss may be due to cell damage, rather than a physiological AR. This study concluded that LPC-induced acrosomal loss from tammar wallaby spermatozoa is due to its action as a natural detergent and not as a phosphoinositide pathway intermediate. The study further demonstrates the unusual stability of the marsupial acrosomal membranes. © 1993 Wiley-Liss, Inc.  相似文献   
94.
95.
Phages depend on their bacterial hosts to replicate. The habitat, density and genetic diversity of host populations are therefore key factors in phage ecology, but our ability to explore their biology depends on the isolation of a diverse and representative collection of phages from different sources. Here, we compared two populations of marine bacterial hosts and their phages collected during a time series sampling program in an oyster farm. The population of Vibrio crassostreae, a species associated specifically to oysters, was genetically structured into clades of near clonal strains, leading to the isolation of closely related phages forming large modules in phage–bacterial infection networks. For Vibrio chagasii, which blooms in the water column, a lower number of closely related hosts and a higher diversity of isolated phages resulted in small modules in the phage–bacterial infection network. Over time, phage load was correlated with V. chagasii abundance, indicating a role of host blooms in driving phage abundance. Genetic experiments further demonstrated that these phage blooms can generate epigenetic and genetic variability that can counteract host defence systems. These results highlight the importance of considering both the environmental dynamics and the genetic structure of the host when interpreting phage–bacteria networks.  相似文献   
96.
Summary The development and application of in vitro alternatives designed to reduce or replace the use of animals, or to lessen the distress and discomfort of laboratory animals, is a rapidly developing trend in toxicology. However, at present there is no formal administrative process to organize, coordinate, or evaluate validation activities. A framework capable of fostering the validation of new methods is essential for the effective transfer of new technologic developments from the research laboratory into practical use. This committee has identified four essential validation resources: chemical bank(s), cell and tissue banks, a data bank, and reference laboratories. The creation of a Scientific Advisory Board composed of experts in the various aspects and endpoints of toxicity testing, and representing the academic, industrial, and regulatory communities, is recommended. Test validation acceptance is contingent on broad buy-in by disparate groups in the scientific community—academics, industry, and government. This is best achieved by early and frequent communication among parties and agreement on common goals. It is hoped that the creation of a validation infrastructure composed of the elements described in this report will facilitate scientific acceptance and utilization of alternative methodologies and speed implementation of replacement, reduction, and refinement alternatives in toxicity testing.  相似文献   
97.
98.

Aim

Coastal fishes have a fundamental role in marine ecosystem functioning and contributions to people, but face increasing threats due to climate change, habitat degradation and overexploitation. The extent to which human pressures are impacting coastal fish biodiversity in comparison with geographic and environmental factors at large spatial scale is still under scrutiny. Here, we took advantage of environmental DNA (eDNA) metabarcoding to investigate the relationship between fish biodiversity, including taxonomic and genetic components, and environmental but also socio-economic factors.

Location

Tropical, temperate and polar coastal areas.

Time period

Present day.

Major taxa studied

Marine fishes.

Methods

We analysed fish eDNA in 263 stations (samples) in 68 sites distributed across polar, temperate and tropical regions. We modelled the effect of environmental, geographic and socio-economic factors on α- and β-diversity. We then computed the partial effect of each factor on several fish biodiversity components using taxonomic molecular units (MOTU) and genetic sequences. We also investigated the relationship between fish genetic α- and β-diversity measured from our barcodes, and phylogenetic but also functional diversity.

Results

We show that fish eDNA MOTU and sequence α- and β-diversity have the strongest correlation with environmental factors on coastal ecosystems worldwide. However, our models also reveal a negative correlation between biodiversity and human dependence on marine ecosystems. In areas with high dependence, diversity of all fish, cryptobenthic fish and large fish MOTUs declined steeply. Finally, we show that a sequence diversity index, accounting for genetic distance between pairs of MOTUs, within and between communities, is a reliable proxy of phylogenetic and functional diversity.

Main conclusions

Together, our results demonstrate that short eDNA sequences can be used to assess climate and direct human impacts on marine biodiversity at large scale in the Anthropocene and can further be extended to investigate biodiversity in its phylogenetic and functional dimensions.  相似文献   
99.

Aim

The distribution of mesoplankton communities has been poorly studied at global scale, especially from in situ instruments. This study aims to (1) describe the global distribution of mesoplankton communities in relation to their environment and (2) assess the ability of various environmental-based ocean regionalizations to explain the distribution of these communities.

Location

Global ocean, 0–500 m depth.

Time Period

2008–2019.

Major Taxa Studied

Twenty-eight groups of large mesoplanktonic and macroplanktonic organisms, covering Metazoa, Rhizaria and Cyanobacteria.

Methods

From a global data set of 2500 vertical profiles making use of the Underwater Vision Profiler 5 (UVP5), an in situ imaging instrument, we studied the global distribution of large (>600 μm) mesoplanktonic organisms. Among the 6.8 million imaged objects, 330,000 were large zooplanktonic organisms and phytoplankton colonies, the rest consisting of marine snow particles. Multivariate ordination (PCA) and clustering were used to describe patterns in community composition, while comparison with existing regionalizations was performed with regression methods (RDA).

Results

Within the observed size range, epipelagic plankton communities were Trichodesmium-enriched in the intertropical Atlantic, Copepoda-enriched at high latitudes and in upwelling areas, and Rhizaria-enriched in oligotrophic areas. In the mesopelagic layer, Copepoda-enriched communities were also found at high latitudes and in the Atlantic Ocean, while Rhizaria-enriched communities prevailed in the Peruvian upwelling system and a few mixed communities were found elsewhere. The comparison between the distribution of these communities and a set of existing regionalizations of the ocean suggested that the structure of plankton communities described above is mostly driven by basin-level environmental conditions.

Main Conclusions

In both layers, three types of plankton communities emerged and seemed to be mostly driven by regional environmental conditions. This work sheds light on the role not only of metazoans, but also of unexpected large protists and cyanobacteria in structuring large mesoplankton communities.  相似文献   
100.
Aegilops tauschii is the diploid progenitor of the wheat D subgenome and a valuable resource for wheat breeding, yet, genetic analysis of resistance against Fusarium head blight (FHB) and the major Fusarium mycotoxin deoxynivalenol (DON) is lacking. We treated a panel of 147 Ae. tauschii accessions with either Fusarium graminearum spores or DON solution and recorded the associated disease spread or toxin-induced bleaching. A k-mer-based association mapping pipeline dissected the genetic basis of resistance and identified candidate genes. After DON infiltration nine accessions revealed severe bleaching symptoms concomitant with lower conversion rates of DON into the non-toxic DON-3-O-glucoside. We identified the gene AET5Gv20385300 on chromosome 5D encoding a uridine diphosphate (UDP)-glucosyltransferase (UGT) as the causal variant and the mutant allele resulting in a truncated protein was only found in the nine susceptible accessions. This UGT is also polymorphic in hexaploid wheat and when expressed in Saccharomyces cerevisiae only the full-length gene conferred resistance against DON. Analysing the D subgenome helped to elucidate the genetic control of FHB resistance and identified a UGT involved in DON detoxification in Ae. tauschii and hexaploid wheat. This resistance mechanism is highly conserved since the UGT is orthologous to the barley UGT HvUGT13248 indicating descent from a common ancestor of wheat and barley.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号