首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12874篇
  免费   1068篇
  国内免费   9篇
  2023年   50篇
  2022年   100篇
  2021年   234篇
  2020年   135篇
  2019年   201篇
  2018年   238篇
  2017年   219篇
  2016年   319篇
  2015年   610篇
  2014年   641篇
  2013年   777篇
  2012年   1059篇
  2011年   1015篇
  2010年   641篇
  2009年   585篇
  2008年   819篇
  2007年   847篇
  2006年   728篇
  2005年   726篇
  2004年   686篇
  2003年   631篇
  2002年   638篇
  2001年   122篇
  2000年   82篇
  1999年   134篇
  1998年   157篇
  1997年   130篇
  1996年   115篇
  1995年   123篇
  1994年   106篇
  1993年   78篇
  1992年   90篇
  1991年   61篇
  1990年   67篇
  1989年   69篇
  1988年   39篇
  1987年   43篇
  1986年   46篇
  1985年   45篇
  1984年   55篇
  1983年   51篇
  1982年   68篇
  1981年   45篇
  1980年   47篇
  1979年   34篇
  1978年   44篇
  1977年   39篇
  1976年   23篇
  1975年   22篇
  1973年   18篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Ubiquitination of mammalian Pex5p, the peroxisomal import receptor   总被引:2,自引:0,他引:2  
Protein translocation across the peroxisomal membrane requires the concerted action of numerous peroxins. One central component of this machinery is Pex5p, the cycling receptor for matrix proteins. Pex5p recognizes newly synthesized proteins in the cytosol and promotes their translocation across the peroxisomal membrane. After this translocation step, Pex5p is recycled back into the cytosol to start a new protein transport cycle. Here, we show that mammalian Pex5p is ubiquitinated at the peroxisomal membrane. Two different types of ubiquitination were detected, one of which is thiol-sensitive, involves Cys(11) of Pex5p, and is necessary for the export of the receptor back into the cytosol. Together with mechanistic data recently described for yeast Pex5p, these findings provide strong evidence for the existence of Pex4p- and Pex22p-like proteins in mammals.  相似文献   
992.
ADAMTS-4 and ADAMTS-5 are aggrecanases responsible for the breakdown of cartilage aggrecan in osteoarthritis. Multiple ADAMTS-4 cleavage sites have been described in several matrix proteins including aggrecan, versican, and brevican, but no concise predictive cleavage motif has been identified for this protease. By screening a 13-mer peptide library with a diversity of 10(8), we have identified the ADAMTS-4 cleavage motif E-(AFVLMY)-X(0,1)-(RK)-X(2,3)-(ST)-(VYIFWMLA), with Glu representing P1. Several 13-mer peptides containing this motif, including DVQEFRGVTAVIR and HNEFRQRETYMVF, were shown to be substrates for ADAMTS-4. These peptides were found to be specific substrates for ADAMTS-4 as they were not cleaved by ADAMTS-5. Modification of these peptides with donor (6-FAM) and acceptor (QSY-9) molecules resulted in the development of fluorescence-based substrates with a Km of approximately 35 microM. Furthermore, the role of Glu at P1 and Phe at P1' in binding and catalysis was studied by exploring substitution of these amino acids with the D-isomeric forms. Substitution of P1 with dGlu was tolerable for binding, but not catalysis, whereas substitution of P1' with dPhe precluded both binding and catalysis. Similarly, replacement of Glu with Asp at P1 abolished recognition and cleavage of the peptide. Finally, BLAST results of the ADAMTS-4 cleavage motif identified matrilin-3 as a new substrate for ADAMTS-4. When tested, recombinant ADAMTS-4 effectively cleaved intact matrilin-3 at the predicted motif at Glu435/Ala436 generating two species of 45 and 5 kDa.  相似文献   
993.
The epithelial cell-specific adaptor complex AP-1B is crucial for correct delivery of many transmembrane proteins from recycling endosomes to the basolateral plasma membrane. Subsequently, membrane fusion is dependent on the formation of complexes between SNARE proteins located at the target membrane and on transport vesicles. Although the t-SNARE syntaxin 4 has been localized to the basolateral membrane, the v-SNARE operative in the AP-1B pathway remained unknown. We show that the ubiquitously expressed v-SNARE cellubrevin localizes to the basolateral membrane and to recycling endosomes, where it colocalizes with AP-1B. Furthermore, we demonstrate that cellubrevin coimmunoprecipitates preferentially with syntaxin 4, implicating this v-SNARE in basolateral fusion events. Cleavage of cellubrevin with tetanus neurotoxin (TeNT) results in scattering of AP-1B localization and missorting of AP-1B-dependent cargos, such as transferrin receptor and a truncated low-density lipoprotein receptor, LDLR-CT27. These data suggest that cellubrevin and AP-1B cooperate in basolateral membrane trafficking.  相似文献   
994.
Duchenne muscular dystrophy (DMD) is a fatal and incurable muscle degenerative disorder. We identify a function of the protease urokinase plasminogen activator (uPA) in mdx mice, a mouse model of DMD. The expression of uPA is induced in mdx dystrophic muscle, and the genetic loss of uPA in mdx mice exacerbated muscle dystrophy and reduced muscular function. Bone marrow (BM) transplantation experiments revealed a critical function for BM-derived uPA in mdx muscle repair via three mechanisms: (1) by promoting the infiltration of BM-derived inflammatory cells; (2) by preventing the excessive deposition of fibrin; and (3) by promoting myoblast migration. Interestingly, genetic loss of the uPA receptor in mdx mice did not exacerbate muscular dystrophy in mdx mice, suggesting that uPA exerts its effects independently of its receptor. These findings underscore the importance of uPA in muscular dystrophy.  相似文献   
995.
Axons and dendrites can withstand acute mechanical strain despite their small diameter. In this study, we demonstrate that beta-spectrin is required for the physical integrity of neuronal processes in the nematode Caenorhabditis elegans. Axons in beta-spectrin mutants spontaneously break. Breakage is caused by acute strain generated by movement because breakage can be prevented by paralyzing the mutant animals. After breaking, the neuron attempts to regenerate by initiating a new growth cone; this second round of axon extension is error prone compared with initial outgrowth. Because spectrin is a major target of calpain proteolysis, it is possible that some neurodegenerative disorders may involve the cleavage of spectrin followed by the breakage of neural processes.  相似文献   
996.
The biocidal activity of three steam distilled wood essential oils-incense cedar, Calocedrus decurrens (Torr.) Florin; Port-Orford-cedar, Chamaecyparis lawsoniana (A. Murr.) Parl.; and western juniper, Juniperus occidentalis (Hook)--were evaluated against adult Aedes aegypti (L.) (Diptera: Culicidae) and Xenopsylla cheopis (Rothchild) (Siphonaptera: Pulicidae) and nymphal Ixodes scapularis Say (Acari: Ixodidae). In vitro laboratory bioassays were conducted to establish baseline dose-mortality data through 24 h. Incense cedar heartwood was the most toxic to all three vector species followed in order of activity by western juniper and Port-Orford-cedar based on LC50 and LC90 values. Ae. aegypti were substantially more susceptible to the oils than either I. scapularis or X. cheopis.  相似文献   
997.
998.
Proteome analysis of grape skins during ripening   总被引:3,自引:0,他引:3  
The characterization of proteins isolated from skin tissue is apparently an essential parameter for understanding grape ripening as this tissue contains the key compounds for wine quality. It has been particularly difficult to extract proteins from skins for analysis by two-dimensional electrophoresis gels and, therefore, a protocol for this purpose has been adapted. The focus was on the evolution of the proteome profile of grape skin during maturation. Proteome maps obtained at three stages of ripening were compared to assess the extent to which protein distribution differs in grape skin during ripening. The comparative analysis shows that numerous soluble skin proteins evolve during ripening and reveal specific distributions at different stages. Proteins involved in photosynthesis, carbohydrate metabolisms, and stress response are identified as being over-expressed at the beginning of colour-change. The end of colour-change is characterized by the over-expression of proteins involved in anthocyanin synthesis and, at harvest, the dominant proteins are involved in defence mechanisms. In particular, increases in the abundance of different chitinase and beta-1,3-glucanase isoforms were found as the berry ripens. This observation can be correlated with the increase of the activities of both of these enzymes during skin ripening. The differences observed in proteome maps clearly show that significant metabolic changes occur in grape skin during this crucial phase of ripening. This comparative analysis provides more detailed characterization of the fruit ripening process.  相似文献   
999.
Voltage-gated sodium channels expressed on the plasma membrane activate rapidly in response to changes in membrane potential in cells with excitable membranes such as muscle and neurons. Macrophages also require rapid signaling mechanisms as the first line of defense against invasion by microorganisms. In this study, our goal was to examine the role of intracellular voltage-gated sodium channels in macrophage function. We demonstrate that the cardiac voltage-gated sodium channel, NaV1.5, is expressed on the late endosome, but not the plasma membrane, in a human monocytic cell line, THP-1, and primary human monocyte-derived macrophages. Although the neuronal channel, NaV1.6, is also expressed intracellularly, it has a distinct subcellular localization. In primed cells, NaV1.5 regulates phagocytosis and endosomal pH during LPS-mediated endosomal acidification. Activation of the endosomal channel causes sodium efflux and decreased intraendosomal pH. These results demonstrate a functionally relevant intracellular voltage-gated sodium channel and reveal a novel mechanism to regulate macrophage endosomal acidification.  相似文献   
1000.
TLR signal via Toll-IL-1R (TIR) homology domain-containing adaptor proteins. One of these adaptors, Toll-IL-1R domain-containing adaptor inducing IFN-beta-related adaptor molecule (TRAM), has been shown to be essential for TLR4 signaling in TRAM(-/-) mice and cell lines. Previously, we showed that MyD88 or Mal dominant-negative constructs did not inhibit LPS induction of cytokines in primary human M-CSF-derived macrophages. A possible explanation was redundancy of the adaptors during LPS signaling. TRAM is a suitable candidate to compensate for these adaptors. To investigate a potential role for TRAM in LPS signaling in human M-CSF-derived macrophages, we engineered an adenoviral construct expressing dominant-negative TRAM-C117H (AdTRAMdn). Synovial fibroblasts (SF) and human umbilical endothelial cells (HUVECs) were used as a nonmyeloid comparison. AdTRAMdn inhibited LPS-induced signaling in SFs and HUVECs, reducing NF-kappaB activation and cytokine production, but did not inhibit LPS signaling in M-CSF-derived human macrophages. Further investigation of other TLR ligands showed that AdTRAMdn was also able to inhibit signaling initiated by lipoteichoic acid, a TLR2 ligand, in SFs and HUVECs and lipoteichoic acid and macrophage-activating lipopeptide 2 signaling was also inhibited in TRAM(-/-) murine embryonic fibroblasts. We conclude that TRAM is an adaptor protein for both TLR4 and TLR2/6 signaling in SFs, HUVECs, and murine embryonic fibroblasts, but cannot demonstrate a role in human macrophages.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号