首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12874篇
  免费   1068篇
  国内免费   9篇
  2023年   50篇
  2022年   100篇
  2021年   234篇
  2020年   135篇
  2019年   201篇
  2018年   238篇
  2017年   219篇
  2016年   319篇
  2015年   610篇
  2014年   641篇
  2013年   777篇
  2012年   1059篇
  2011年   1015篇
  2010年   641篇
  2009年   585篇
  2008年   819篇
  2007年   847篇
  2006年   728篇
  2005年   726篇
  2004年   686篇
  2003年   631篇
  2002年   638篇
  2001年   122篇
  2000年   82篇
  1999年   134篇
  1998年   157篇
  1997年   130篇
  1996年   115篇
  1995年   123篇
  1994年   106篇
  1993年   78篇
  1992年   90篇
  1991年   61篇
  1990年   67篇
  1989年   69篇
  1988年   39篇
  1987年   43篇
  1986年   46篇
  1985年   45篇
  1984年   55篇
  1983年   51篇
  1982年   68篇
  1981年   45篇
  1980年   47篇
  1979年   34篇
  1978年   44篇
  1977年   39篇
  1976年   23篇
  1975年   22篇
  1973年   18篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
Neuraminidase in Calf Retinal Outer Segment Membranes   总被引:1,自引:1,他引:0  
Abstract: An enzyme catalyzing the hydrolysis of sialic acid ( N -acetylneuraminic acid: NeuNAc)-containing glycoconjugates has been found in bovine retinal rod outer segment (ROS) membranes. The enzymatic activity is optimal at pH 4.0 and is stimulated by 0.15% Triton X-100. Total activity was determined by the release of NeuNAc from endogenous and exogenous substrates (GDla). The ROS enzyme preferentially hydrolyses the ROS gangliosides, possibly because they are more accessible than the glycoproteins as substrates for the neuraminidase. Release of NeuNAc from gangliosides leads to important changes in the ganglioside patterns; whereas the amounts of GM1 increased throughout the incubation, the levels of polysialogangliosides GTlb and GD3 diminished owing to their rapid hydrolysis. The finding that gangliosides are hydrolysed more extensively than glycoproteins suggests that endogenous ROS gangliosides may be the principal source of metabolically available sialic acid in ROS. It was also observed that the activity of ROS neuraminidase is not affected by illumination of the membranes.  相似文献   
62.
While abundant studies have begun to elucidate ontogeny of the peripheral nervous system, molecular mechanisms underlying brain development remain obscure. To approach this problem, we initiated parallel in vivo and in vitro studies of the mouse locus coeruleus (l.c.), a brainstem noradrenergic nucleus. The catecholaminergic enzymes tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DBH) were used to monitor phenotype expression and development. TH catalytic activity and immunocytochemical reactivity were initially detectable on gestational Day 13 (E-13) in vivo, and adult levels of activity were approximately by the third postnatal week. Immunotitration studies indicated that the developmental increase was due to accumulation of enzyme molecules and not enzyme activation. The in vivo developmental profile of DBH approximated that of TH. To begin defining regulatory mechanisms, explants of embryonic brainstem were placed in culture. Explantation on E-12, prior to expression of TH or DBH, resulted in the de novo appearance of these phenotypic characters after 4 days. Explantation on E-18, after the enzymes are already expressed, was followed by a striking sixfold rise in TH activity. Immunotitration studies revealed that the increase in TH activity in E-18 cultures was attributable to increased molecule number, reproducing the in vivo results. Moreover, the E-18 explants, cultured for 3 weeks, attained higher plateau levels of TH activity than E-12 cultures, and this differences was due to increased molecule number. Morphometric analysis indicated that 3-week E-12 cultures actually had more l.c. cells than E-18 cultures, indicating that differences in TH were not due to increased cells in the E-18 l.c. Finally, systemic study revealed that the development of TH activity in culture increased progressively from E-11 to E-12 to E-13, suggesting that critical regulatory events occur at this time. Our studies suggest that the l.c. is an excellent model for the study of brain development in vivo and in vitro. Initial phenotypic expression and dramatic development occur in culture in the absence of normal targets, normal afferent innervation and, presumably, normal humoural milieu.  相似文献   
63.
Specific activity of phosphofructokinase is 7-8-fold higher in exponentially growing human fibroblasts than in quiescent cells, but the difference is considerably less pronounced for two other glycolytic enzymes, glucose phosphate isomerase and pyruvate kinase. The ratio of the F-type to L-type phosphofructokinase subunits is essentially the same in growing and resting cells, 4:1. F-type-phosphofructokinase-related antigen concentration is decreased in resting cells as compared with proliferating fibroblasts, but relatively less than the enzyme activity; the ratio of the enzyme activity to the antigen concentration (immunological specific activity) is therefore lower in resting than in growing fibroblasts. Synthesis of phosphofructokinase, as a percentage of the total protein synthesis, is about 30-fold greater during the proliferative phase than in quiescent cells, but this difference is only 3-4-fold for glucose phosphate isomerase and pyruvate kinase. Modulation of the synthesis of phosphofructokinase therefore seems to be responsible for the changes of its specific activity in function of cell proliferation. The appearance of some inactive cross-reacting material in quiescent cells is probably due to post-translational alteration of the pre-synthesized molecules. Compared with other glycolytic enzymes, such as glucose phosphate isomerase and pyruvate kinase, phosphofructokinase seems to be the (or one of the) preferential target of glycolytic induction in proliferating cells.  相似文献   
64.
65.
66.
67.
Some teichoic acids are known to be partially substituted by α-D-glucopyranosyl residues such as the teichoic acids of Streptococcus faecalis NCIB 8191. They will, therefore, bind specifically the phytohemagglutinin concanavalin A. Concanavalin A labelled with mercury or colloidal gold coated with concanavalin A has been used to mark isolated cell walls in order to localize the teichoic acids at the ultrastructural level. Besides these two direct marking techniques, the indirect concanavalin A-peroxidase technique (localization of peroxidase by the diaminobenzidine method followed by postosmication) has been applied to thin sections of premarked cells. All three methods gave almost identical results, namely, a dense and homogeneous distribution of the cell wall teichoic acids. In control experiments total inhibition was achieved in the presence of methyl-α-D-mannopyranoside. After trichloroacetic acid or alkali extraction of the teichoic acids from isolated walls no marking could be detected.  相似文献   
68.
69.
Contractile properties of old rat muscles: effect of increased use   总被引:1,自引:0,他引:1  
To examine how different kinds of activity affect the composition and contractile properties of aging skeletal muscle, old male rats were strength and swim trained. The mass of weights lifted during the strength training increased by 85 +/- 9% (P less than 0.05), which was accompanied by an increase by 32 +/- 5% (P less than 0.05) of the estimated force developed. The wet muscle weight of the soleus and the plantaris decreased significantly with age. The phenomenon was counteracted but not neutralized by the strength training. Twitch and tetanic tension also decreased significantly with age in both the soleus and plantaris muscle. This was avoided by the strength training. This training also significantly decreased time to peak tension and half-relaxation time of both muscles. The swim training increased the heart-to-body weight ratio by 21 +/- 5% (P less than 0.05) and the endurance of the soleus muscle. Time to peak tension and triosephosphate dehydrogenase activity of the plantaris muscle were strongly correlated (P less than 0.001) with myosin adenosinetriphosphatase activity. The results show that the composition and contractile properties of old skeletal muscle are considerably affected by strength training repeated during a substantial period of old age, whereas swim training only affects the endurance of the skeletal muscle.  相似文献   
70.
The incorporation of [15N]glutamic acid into glutathione was studied in primary cultures of astrocytes. Turnover of the intracellular glutathione pool was rapid, attaining a steady state value of 30.0 atom% excess in 180 min. The intracellular glutathione concentration was high (20-40 nmol/mg protein) and the tripeptide was released rapidly into the incubation medium. Although labeling of glutathione (atom% excess) with [15N]glutamate occurred rapidly, little accumulation of 15N in glutathione was noted during the incubation compared with 15N in aspartate, glutamine, and alanine. Glutathione turnover was stimulated by incubating the astrocytes with diethylmaleate, an electrophile that caused a partial depletion of the glutathione pool(s). Diethylmaleate treatment also was associated with significant reductions of intraastrocytic glutamate, glycine, and cysteine, i.e., the constituents of glutathione. Glutathione synthesis could be stimulated by supplementing the steady-state incubation medium with 0.05 mM L-cysteine, such treatment again partially depleting intraastrocytic glutamate and causing significant reductions of 15N labeling of both alanine and glutamine, suggesting that glutamate had been diverted from the synthesis of these amino acids and toward the formation of glutathione. The current study underscores both the intensity of glutathione turnover in astrocytes and the relationship of this turnover to the metabolism of glutamate and other amino acids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号