首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13114篇
  免费   1071篇
  国内免费   9篇
  2023年   41篇
  2022年   90篇
  2021年   235篇
  2020年   134篇
  2019年   205篇
  2018年   240篇
  2017年   221篇
  2016年   320篇
  2015年   615篇
  2014年   652篇
  2013年   788篇
  2012年   1081篇
  2011年   1034篇
  2010年   644篇
  2009年   588篇
  2008年   833篇
  2007年   852篇
  2006年   733篇
  2005年   728篇
  2004年   693篇
  2003年   639篇
  2002年   644篇
  2001年   130篇
  2000年   85篇
  1999年   132篇
  1998年   160篇
  1997年   128篇
  1996年   118篇
  1995年   120篇
  1994年   105篇
  1993年   81篇
  1992年   90篇
  1991年   63篇
  1990年   72篇
  1989年   71篇
  1988年   45篇
  1987年   55篇
  1986年   56篇
  1985年   51篇
  1984年   60篇
  1983年   41篇
  1982年   64篇
  1981年   50篇
  1980年   51篇
  1979年   46篇
  1978年   48篇
  1977年   44篇
  1976年   30篇
  1975年   24篇
  1973年   24篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
921.
922.
The multidrug resistance-related protein-1 (MRP1) is important for the management of oxidative stress in vascular cells in vivo. Substrates of MRP1 are, among others, glutathione and the leukotriene C4 (LTC4), an eicosanoid and mediator of inflammation. Angiotensin (Ang) II infusion results in MRP1?/? mice compared to wild-type mice in improved endothelial function and reduced reactive oxygen species (ROS) formation. However, the interaction between Ang II, LTC4 and MRP1 is not completely understood and has never been investigated in vitro. Ang II induced in vascular smooth muscle cells (VSMC) the release of LTC4 and the generation of ROS. Pharmacologic inhibition of MRP1 via MK 571 significantly reduced Ang II-induced ROS release (L012-luminescence) in VSMC. The release of ROS after Ang II stimulation is inhibited, to a comparable degree, by blockade of the Cys-LT1 receptor with montelukast. Incubation of VSMC with recombined LTC4 and Ang II caused enhanced rates of proliferation in VSMC. This effect can be rescued by either MRP1 or Cys-LT1 receptor inhibition. Accordingly, stimulation of VSMC with LTC4 reduces intracellular levels of glutathione, but does not affect apoptosis. LTC4 stimulation results in a significant activation of MRP1, but does not alter MRP1 expression. These findings indicate a connection between Ang II, MRP1 and LTC4. Both, MRP1 and LTC4, are potentially promising targets for atheroprotective therapy.  相似文献   
923.
The changes in spatial distribution of intertidal Zostera noltii seagrass beds were studied with multispectral visible-infrared remote sensing in Bourgneuf Bay (France) over a 14-year period, between 1991 and 2005. Six SPOT satellite images acquired at low tide were calibrated using in situ spectroradiometric data and processed with the Normalized Difference Vegetation Index (NDVI). A steady and linear increase in meadow areas was observed between 1991 and 2005 with total surfaces colonized by Z. noltii increasing from 208 to 586 ha, respectively. A greater increase in the densest part of the meadow (NDVI > 0.4) was also observed: it represented only 15% of total meadow surfaces in 1991 vs. 35% in 2005. The seagrass expansion took place mainly towards the lower part of the intertidal zone, while in the upper intertidal zone the meadow appeared strictly limited by the +4 m (Lowest Astronomical Tide) bathymetric level. The influence of Z. noltii above-ground biomass variations on spectral reflectance was analyzed experimentally by spectrometry. Z. noltii displays a characteristic steep slope from 700 to 900 nm, increasing with increasing biomass. A quantitative relationship obtained experimentally between NDVI and the dry weight of leaves was used to produce a biomass distribution map. The distribution of Bourgneuf Bay intertidal seagrass beds is certainly constrained by the water turbidity and we suggest that tidal flat accretion could be a significant variable explaining the observed expansion downwards. With very limited spatial interactions, oyster aquaculture cannot be considered as a threat, while a recent increase in recreational hand fishing of Manila clams within the beds could become problematic.  相似文献   
924.
Replication Protein A (RPA) is a single-stranded DNA-binding protein essential for DNA replication, repair, recombination and cell-cycle regulation. A human homolog of the RPA2 subunit, called RPA4, was previously identified and shown to be expressed in colon mucosal and placental cells; however, the function of RPA4 was not determined. To examine the function of RPA4 in human cells, we carried out knockdown and replacement studies to determine whether RPA4 can substitute for RPA2 in the cell. Unlike RPA2, exogenous RPA4 expression did not support chromosomal DNA replication and lead to cell-cycle arrest in G2/M. In addition, RPA4 localized to sites of DNA repair and reduced γ-H2AX caused by RPA2 depletion. These studies suggest that RPA4 cannot support cell proliferation but can support processes that maintain the genomic integrity of the cell.  相似文献   
925.
Intercellular tight junctions define epithelial apicobasal polarity and form a physical fence which protects underlying tissues from pathogen invasions. PALS1, a tight junction-associated protein, is a member of the CRUMBS3-PALS1-PATJ polarity complex, which is crucial for the establishment and maintenance of epithelial polarity in mammals. Here we report that the carboxy-terminal domain of the SARS-CoV E small envelope protein (E) binds to human PALS1. Using coimmunoprecipitation and pull-down assays, we show that E interacts with PALS1 in mammalian cells and further demonstrate that the last four carboxy-terminal amino acids of E form a novel PDZ-binding motif that binds to PALS1 PDZ domain. PALS1 redistributes to the ERGIC/Golgi region, where E accumulates, in SARS-CoV–infected Vero E6 cells. Ectopic expression of E in MDCKII epithelial cells significantly alters cyst morphogenesis and, furthermore, delays formation of tight junctions, affects polarity, and modifies the subcellular distribution of PALS1, in a PDZ-binding motif-dependent manner. We speculate that hijacking of PALS1 by SARS-CoV E plays a determinant role in the disruption of the lung epithelium in SARS patients.  相似文献   
926.
Invadosomes are adhesion structures involved in tissue invasion that are characterized by an intense actin polymerization–depolymerization associated with β1 and β3 integrins and coupled to extracellular matrix (ECM) degradation activity. We induced the formation of invadosomes by expressing the constitutive active form of Src, SrcYF, in different cell types. Use of ECM surfaces micropatterned at the subcellular scale clearly showed that in mesenchymal cells, integrin signaling controls invadosome activity. Using β1−/− or β3−/− cells, it seemed that β1A but not β3 integrins are essential for initiation of invadosome formation. Protein kinase C activity was shown to regulate autoassembly of invadosomes into a ring-like metastructure (rosette), probably by phosphorylation of Ser785 on the β1A tail. Moreover, our study clearly showed that β1A links actin dynamics and ECM degradation in invadosomes. Finally, a new strategy based on fusion of the photosensitizer KillerRed to the β1A cytoplasmic domain allowed specific and immediate loss of function of β1A, resulting in disorganization and disassembly of invadosomes and formation of focal adhesions.  相似文献   
927.
928.
Mitochondria in mammalian cells are visualized as a network or as filaments that undergo continuous changes in shape and in localization within the cells. These changes are a consequence of the activity of different processes such as mitochondrial fusion and fission, and mitochondrial remodelling. In all, these processes are referred to as mitochondrial dynamics, and relevant questions, still unexplained, are why cells require such an active dynamics, or why mitochondria move to specific cellular regions. In this review we will summarize some of the biological functions assigned to the proteins identified as participating in mitochondrial fusion, namely mitofusin 1, mitofusin 2 and OPA1. In addition to the capacity of these proteins to promote fusion, mitofusin 2 or OPA1 regulate mitochondrial metabolism and loss-of-function reduces oxygen consumption and the capacity to oxidize substrates. We propose that mitochondrial fusion proteins operate as integrators of signals so they regulate both mitochondrial fusion and metabolism.  相似文献   
929.
To understand how miRNA-mediated silencing impacts on embryonic mRNAs, we conducted a functional survey of abundant maternal and zygotic miRNA families in the C. elegans embryo. We show that the miR-35-42 and the miR-51-56 miRNA families define maternal and zygotic miRNA-induced silencing complexes (miRISCs), respectively, that share a large number of components. Using a cell-free C. elegans embryonic extract, we demonstrate that the miRISC directs the rapid deadenylation of reporter mRNAs with natural 3'UTRs. The deadenylated targets are translationally suppressed and remarkably stable. Sampling of the predicted miR-35-42 targets reveals that roughly half are deadenylated in a miRNA-dependent manner, but with each target displaying a distinct efficiency and pattern of deadenylation. Finally, we demonstrate that functional cooperation between distinct miRISCs within 3'UTRs is required to potentiate deadenylation. With this report, we reveal the extensive and direct impact of miRNA-mediated deadenylation on embryonic mRNAs.  相似文献   
930.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号