首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   7篇
  77篇
  2022年   1篇
  2021年   2篇
  2015年   2篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2011年   7篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2006年   4篇
  2005年   5篇
  2004年   1篇
  2003年   1篇
  2002年   7篇
  2001年   2篇
  2000年   5篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1987年   2篇
  1986年   1篇
  1983年   1篇
  1980年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1961年   1篇
排序方式: 共有77条查询结果,搜索用时 15 毫秒
21.
Genomically imprinted genes are those for which expression is dependent on the sex of the parent from which they are derived. Numerous theories have been proposed for the evolution of genomic imprinting: one theory is that it is an intra-individual manifestation of classical parent -offspring conflict. This theory is unique in predicting that an arms race may develop between maternally and paternally derived genes for the control of foetal growth demands. Such antagonistic coevolution may be mediated through changes in the structure of the proteins concerned. Comparable coevolution is the most likely explanation for the rapid changes seen in antigenic components of parasites and antigen recognition components of immune systems. We have examined the evolution of insulin-like growth factor Igf2, and its antagonistic receptor Igf2r) and find that in contrast to immune genes, at the sites of mutual binding they are highly conserved. In addition, we have analysed the rate of molecular evolution of seven imprinted genes including Igf2 and Igf2r), sequenced in both mouse and rat, and had that this is the same as that of nonimprinted receptors and significantly lower than that of immune genes controlling for differences in mutation rates. Contrary to the expectations of the conflict hypothesis, we hence find no evidence for antagonistic coevolution of imprinted genes mediated by changes in sequence.  相似文献   
22.
Inherited genetic variation contributes to individual risk for many complex diseases and is increasingly being used for predictive patient stratification. Previous work has shown that genetic factors are not equally relevant to human traits across age and other contexts, though the reasons for such variation are not clear. Here, we introduce methods to infer the form of the longitudinal relationship between genetic relative risk for disease and age and to test whether all genetic risk factors behave similarly. We use a proportional hazards model within an interval-based censoring methodology to estimate age-varying individual variant contributions to genetic relative risk for 24 common diseases within the British ancestry subset of UK Biobank, applying a Bayesian clustering approach to group variants by their relative risk profile over age and permutation tests for age dependency and multiplicity of profiles. We find evidence for age-varying relative risk profiles in nine diseases, including hypertension, skin cancer, atherosclerotic heart disease, hypothyroidism and calculus of gallbladder, several of which show evidence, albeit weak, for multiple distinct profiles of genetic relative risk. The predominant pattern shows genetic risk factors having the greatest relative impact on risk of early disease, with a monotonic decrease over time, at least for the majority of variants, although the magnitude and form of the decrease varies among diseases. As a consequence, for diseases where genetic relative risk decreases over age, genetic risk factors have stronger explanatory power among younger populations, compared to older ones. We show that these patterns cannot be explained by a simple model involving the presence of unobserved covariates such as environmental factors. We discuss possible models that can explain our observations and the implications for genetic risk prediction.  相似文献   
23.
Synopsis Contraction time of an isolated white muscle from the temperate water Girella tricuspidata is proportional to temperature and inversely proportional to fish size. Between ambient (14°C) and 8° C muscle from all sizes of fish is similary affected by temperature; the lower the temperature the more the contraction time is slowed. Below 8° C muscle from large fish is affected more than is muscle from small fish. Contraction time of white muscle in the antarctic notothenioid Pagothenia borchgrevinki is about twice as fast as that of Girella tricuspidata at temperatures between 2–12°C, but at normal body temperature, contraction time of muscle from Girella tricuspidata (14°C) is about twice as fast as that of Pagothenia borchgrevinki (–1.9°C).  相似文献   
24.
Many species of oak gallwasp (Hymenoptera: Cynipidae: Cynipini) induce galls containing more than one larva (multilocular galls) on their host plant. To date, it has remained unclear whether multilocular galls result solely from clustered oviposition by a single female, or include the aggregated offspring of several females (multiple founding). We have developed a novel maximum-likelihood approach for use with population genetic data that estimates the number and genotypes of parents contributing to offspring from each gall. We apply this method to allozyme data from multiple populations of four oak gallwasps whose asexual generations develop in multilocular galls (Andricus coriarius, A. lucidus, A. panteli and A. seckendorffi). We find strong evidence for multiple founding in all four species, and show the data to be compatible with multiple founding rather than founding by a single foundress mated with multiple males. The extent of multiple founding differs among species: in A. lucidus and A. seckendorffi most galls are induced by a single female, whereas in A. coriarius and A. panteli over half of the galls sampled were multiple founded. We suggest that variation in levels of multiple founding may be due to consistent ecological differences between the four species.  相似文献   
25.
Alistair  McVean 《Journal of Zoology》1991,224(2):213-222
The internal radius (r) and radius of curvature (R) of the single semicircular canals of Myxine glutinosa have unusual dimensions. In mammals and fish the increase in dimension of r and R with respect to body weight is small; in fish r is larger than in mammals of equivalent weight in order to increase the sensitivity of the canals to angular rotation and R increases correspondingly (Jones & Spells, 1963). In Myxine r is larger than in fish or mammals yet R is smaller. It is argued that the large internal radius is the result of the need to increase the sensitivity of a single canal which has to signal rotation in three planes while the small radius of curvature follows from the absence of a cupula. In order to verify that the cristae of the canals do respond to rotational velocity, recordings were obtained from the nerves serving the canals during rotation in the horizontal plane. The frequency response of several afferents recorded simultaneously at sinusoidal rotations between 0.25 and 2.0 Hz was in the form of a sine wave 90 in advance of head position, as would be expected of a velocity transducer. The gain of single afferents was an order of magnitude less than those reported for other vertebrates.  相似文献   
26.
In bacteria, synonymous codon usage can be considerably affected by base composition at neighboring sites. Such context-dependent biases may be caused by either selection against specific nucleotide motifs or context-dependent mutation biases. Here we consider the evolutionary conservation of context-dependent codon bias across 11 completely sequenced bacterial genomes. In particular, we focus on two contextual biases previously identified in Escherichia coli; the avoidance of out-of-frame stop codons and AGG motifs. By identifying homologues of E. coli genes, we also investigate the effect of gene expression level in Haemophilus influenzae and Mycoplasma genitalium. We find that while context-dependent codon biases are widespread in bacteria, few are conserved across all species considered. Avoidance of out-of-frame stop codons does not apply to all stop codons or amino acids in E. coli, does not hold for different species, does not increase with gene expression level, and is not relaxed in Mycoplasma spp., in which the canonical stop codon, TGA, is recognized as tryptophan. Avoidance of AGG motifs shows some evolutionary conservation and increases with gene expression level in E. coli, suggestive of the action of selection, but the cause of the bias differs between species. These results demonstrate that strong context-dependent forces, both selective and mutational, operate on synonymous codon usage but that these differ considerably between genomes. Received: 6 May 1999 / Accepted: 29 October 1999  相似文献   
27.
28.
There is an abundance of malaria genetic data being collected from the field, yet using these data to understand the drivers of regional epidemiology remains a challenge. A key issue is the lack of models that relate parasite genetic diversity to epidemiological parameters. Classical models in population genetics characterize changes in genetic diversity in relation to demographic parameters, but fail to account for the unique features of the malaria life cycle. In contrast, epidemiological models, such as the Ross-Macdonald model, capture malaria transmission dynamics but do not consider genetics. Here, we have developed an integrated model encompassing both parasite evolution and regional epidemiology. We achieve this by combining the Ross-Macdonald model with an intra-host continuous-time Moran model, thus explicitly representing the evolution of individual parasite genomes in a traditional epidemiological framework. Implemented as a stochastic simulation, we use the model to explore relationships between measures of parasite genetic diversity and parasite prevalence, a widely-used metric of transmission intensity. First, we explore how varying parasite prevalence influences genetic diversity at equilibrium. We find that multiple genetic diversity statistics are correlated with prevalence, but the strength of the relationships depends on whether variation in prevalence is driven by host- or vector-related factors. Next, we assess the responsiveness of a variety of statistics to malaria control interventions, finding that those related to mixed infections respond quickly (∼months) whereas other statistics, such as nucleotide diversity, may take decades to respond. These findings provide insights into the opportunities and challenges associated with using genetic data to monitor malaria epidemiology.  相似文献   
29.
Gay J  Myers S  McVean G 《Genetics》2007,177(2):881-894
Gene conversion plays an important part in shaping genetic diversity in populations, yet estimating the rate at which it occurs is difficult because of the short lengths of DNA involved. We have developed a new statistical approach to estimating gene conversion rates from genetic variation, by extending an existing model for haplotype data in the presence of crossover events. We show, by simulation, that when the rate of gene conversion events is at least comparable to the rate of crossover events, the method provides a powerful approach to the detection of gene conversion and estimation of its rate. Application of the method to data from the telomeric X chromosome of Drosophila melanogaster, in which crossover activity is suppressed, indicates that gene conversion occurs approximately 400 times more often than crossover events. We also extend the method to estimating variable crossover and gene conversion rates and estimate the rate of gene conversion to be approximately 1.5 times higher than the crossover rate in a region of human chromosome 1 with known recombination hotspots.  相似文献   
30.
In humans, the rate of recombination, as measured on the megabase scale, is positively associated with the level of genetic variation, as measured at the genic scale. Despite considerable debate, it is not clear whether these factors are causally linked or, if they are, whether this is driven by the repeated action of adaptive evolution or molecular processes such as double-strand break formation and mismatch repair. We introduce three innovations to the analysis of recombination and diversity: fine-scale genetic maps estimated from genotype experiments that identify recombination hotspots at the kilobase scale, analysis of an entire human chromosome, and the use of wavelet techniques to identify correlations acting at different scales. We show that recombination influences genetic diversity only at the level of recombination hotspots. Hotspots are also associated with local increases in GC content and the relative frequency of GC-increasing mutations but have no effect on substitution rates. Broad-scale association between recombination and diversity is explained through covariance of both factors with base composition. To our knowledge, these results are the first evidence of a direct and local influence of recombination hotspots on genetic variation and the fate of individual mutations. However, that hotspots have no influence on substitution rates suggests that they are too ephemeral on an evolutionary time scale to have a strong influence on broader scale patterns of base composition and long-term molecular evolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号