首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   29篇
  2022年   1篇
  2021年   4篇
  2020年   1篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2015年   7篇
  2014年   7篇
  2013年   8篇
  2012年   3篇
  2011年   6篇
  2010年   2篇
  2009年   2篇
  2008年   4篇
  2007年   7篇
  2006年   7篇
  2005年   5篇
  2004年   8篇
  2003年   2篇
  2002年   3篇
  2001年   6篇
  2000年   6篇
  1999年   4篇
  1998年   11篇
  1997年   5篇
  1996年   4篇
  1995年   3篇
  1994年   7篇
  1993年   5篇
  1992年   2篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1978年   1篇
  1977年   1篇
排序方式: 共有145条查询结果,搜索用时 15 毫秒
41.
Evidence of associations between free-living amoebas and human disease has been increasing in recent years. Knowledge about phylogenetic relationships that may be important for the understanding of pathogenicity in the genera involved is very limited at present. Consequently, we have begun to study these relationships and report here on the phylogeny of Hartmannella vermiformis, a free-living amoeba that can harbor the etiologic agent of Legionnaires' disease. Our analysis is based on studies of small-subunit ribosomal RNA genes (srDNA). Nucleotide sequences were determined for nuclear srDNA from three strains of H. vermiformis isolated from the United Kingdom, Germany, and the United States. These sequences then were compared with a sequence previously obtained for a North American isolate by J. H. Gunderson and M. L. Sogin. The four genes are 1,840 bp long, with an average GC content of 49.6%. Sequence differences among the strains range are 0.38%-0.76%. Variation occurs at 19 positions and includes 2 single-base indels plus 14 monotypic and 3 ditypic single-base substitutions. Variation is limited to eight helix/loop structures according to a current model for srRNA secondary structure. Parsimony, distance, and bootstrap analyses used to examine phylogenetic relationships between the srDNA sequences of H. vermiformis and other eukaryotes indicated that Hartmannella sequences were most closely related to those of Acanthamoeba and the alga Cryptomonas. All ditypic sites were consistent with a separation between European and North American strains of Hartmannella, but results of other tests of this relationship were statistically inconclusive.   相似文献   
42.
The hypothesis that glial cells synthesize proteins which are transferred to adjacent neurons was evaluated in the giant fiber of the squid (Loligo pealei). When giant fibers are separated from their neuron cell bodies and incubated in the presence of radioactive amino acids, labeled proteins appear in the glial cells and axoplasm. Labeled axonal proteins were detected by three methods: extrusion of the axoplasm from the giant fiber, autoradiography, and perfusion of the giant fiber. This protein synthesis is completely inhibited by puromycin but is not affected by chloramphenicol. The following evidence indicates that the labeled axonal proteins are not synthesized within the axon itself. (a) The axon does not contain a significant amount of ribosomes or ribosomal RNA. (b) Isolated axoplasm did not incorporate [(3)H]leucine into proteins. (c) Injection of Rnase into the giant axon did not reduce the appearance of newly synthesized proteins in the axoplasm of the giant fiber. These findings, coupled with other evidence, have led us to conclude that the adaxonal glial cells synthesize a class of proteins which are transferred to the giant axon. Analysis of the kinetics of this phenomenon indicates that some proteins are transferred to the axon within minutes of their synthesis in the glial cells. One or more of the steps in the transfer process appear to involve Ca++, since replacement of extracellular Ca++ by either Mg++ or Co++ significantly reduces the appearance of labeled proteins in the axon. A substantial fraction of newly synthesized glial proteins, possibly as much as 40 percent, are transferred to the giant axon. These proteins are heterogeneous and range in size from 12,000 to greater than 200,000 daltons. Comparisons of the amount of amino acid incorporation in glia cells and neuron cell bodies raise the possibility that the adaxonal glial cells may provide an important source of axonal proteins which is supplemental to that provided by axonal transport from the cell body. These findings are discussed with reference to a possible trophic effect of glia on neurons and metabolic cooperation between adaxonal glia and the axon.  相似文献   
43.
44.
45.
La is an RNA-processing-associated phosphoprotein so highly conserved that the human La protein (hLa) can replace the tRNA-processing function of the fission yeast La protein (Sla1p) in vivo. La proteins contain multiple trafficking elements that support interactions with RNAs in different subcellular locations. Prior data indicate that deletion of a nuclear retention element (NRE) causes nuclear export of La and dysfunctional processing of associated pre-tRNAs that are spliced but 5' and 3' unprocessed, with an accompanying decrease in tRNA-mediated suppression, in fission yeast. To further pursue these observations, we first identified conserved residues in the NREs of hLa and Sla1p that when substituted mimic the NRE deletion phenotype. NRE-defective La proteins then deleted of other motifs indicated that RNA recognition motif 1 (RRM1) is required for nuclear export. Mutations of conserved RRM1 residues restored nuclear accumulation of NRE-defective La proteins. Some RRM1 mutations restored nuclear accumulation, prevented disordered pre-tRNA processing, and restored suppression, indicating that the tRNA-related activity of RRM1 and its nuclear export activity could be functionally separated. When mapped onto an hLa structure, the export-sensitive residues comprised surfaces distinct from the RNA-binding surface of RRM1. The data indicate that the NRE has been conserved to mask or functionally override an equally conserved nuclear export activity of RRM1. The data suggest that conserved elements mediate nuclear retention, nuclear export, and RNA-binding activities of the multifunctional La protein and that their interrelationship contributes to the ability of La to engage its different classes of RNA ligands in different cellular locations.  相似文献   
46.
47.
48.
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号