首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1890篇
  免费   134篇
  国内免费   1篇
  2023年   12篇
  2022年   48篇
  2021年   73篇
  2020年   35篇
  2019年   48篇
  2018年   57篇
  2017年   50篇
  2016年   80篇
  2015年   109篇
  2014年   131篇
  2013年   143篇
  2012年   178篇
  2011年   141篇
  2010年   79篇
  2009年   62篇
  2008年   116篇
  2007年   109篇
  2006年   84篇
  2005年   81篇
  2004年   66篇
  2003年   58篇
  2002年   57篇
  2001年   21篇
  2000年   26篇
  1999年   15篇
  1998年   11篇
  1997年   10篇
  1996年   9篇
  1995年   3篇
  1994年   8篇
  1993年   4篇
  1992年   9篇
  1991年   9篇
  1990年   10篇
  1989年   7篇
  1988年   7篇
  1987年   3篇
  1985年   2篇
  1984年   7篇
  1983年   4篇
  1982年   5篇
  1981年   4篇
  1979年   2篇
  1977年   4篇
  1976年   2篇
  1975年   3篇
  1974年   3篇
  1972年   2篇
  1971年   3篇
  1970年   5篇
排序方式: 共有2025条查询结果,搜索用时 15 毫秒
91.
Pseudomonas aeruginosa is an opportunistic human pathogen and a leading cause of chronic infection in the lungs of individuals with cystic fibrosis. After colonization, P. aeruginosa often undergoes a phenotypic conversion to mucoidy, characterized by overproduction of the alginate exopolysaccharide. This conversion is correlated with poorer patient prognoses. The majority of genes required for alginate synthesis, including the alginate lyase, algL, are located in a single operon. Previous investigations of AlgL have resulted in several divergent hypotheses regarding the protein’s role in alginate production. To address these discrepancies, we determined the structure of AlgL and, using multiple sequence alignments, identified key active site residues involved in alginate binding and catalysis. In vitro enzymatic analysis of active site mutants highlights R249 and Y256 as key residues required for alginate lyase activity. In a genetically engineered P. aeruginosa strain where alginate biosynthesis is under arabinose control, we found that AlgL is required for cell viability and maintaining membrane integrity during alginate production. We demonstrate that AlgL functions as a homeostasis enzyme to clear the periplasmic space of accumulated polymer. Constitutive expression of the AlgU/T sigma factor mitigates the effects of an algL deletion during alginate production, suggesting that an AlgU/T-regulated protein or proteins can compensate for an algL deletion. Together, our study demonstrates the role of AlgL in alginate biosynthesis, explains the discrepancies observed previously across other P. aeruginosa ΔalgL genetic backgrounds, and clarifies the existing divergent data regarding the function of AlgL as an alginate degrading enzyme.  相似文献   
92.
The COVID-19 pandemic led to the reorganization of health care in several countries, including Brazil. Inborn Errors of Metabolism (IEM) are a group of rare and difficult to diagnose genetic diseases caused by pathogenic variants in genes that code for enzymes, cofactors, or structural proteins affecting different metabolic pathways. The aim of this study was to evaluate how COVID-19 affected the diagnosis of patients with IEM during the first year of the pandemic in Brazil comparing two distinct periods: from March 1st, 2019 to February 29th, 2020 (TIME A) and from March 1st, 2020 to February 28th, 2021 (TIME B), by the analysis of the number of tests and diagnoses performed in a Reference Center in South of Brazil. In the comparison TIME A with TIME B, we observe a reduction in the total number of tests performed (46%) and in the number of diagnoses (34%). In both periods analyzed, mucopolysaccharidoses (all subtypes combined) was the most frequent LD suspected and/or confirmed. Our data indicates a large reduction in the number of tests requested for the investigation of IEM and consequently a large reduction in the number of diagnoses caused by the COVID-19 pandemic leading to a significant underdiagnosis of IEM.  相似文献   
93.
The killer-cell immunoglobulin-like receptors (KIR) recognize human leukocyte antigen (HLA) molecules to regulate the cytotoxic and inflammatory responses of natural killer cells. KIR genes are encoded by a rapidly evolving gene family on chromosome 19 and present an unusual variation of presence and absence of genes and high allelic diversity. Although many studies have associated KIR polymorphism with susceptibility to several diseases over the last decades, the high-resolution allele-level haplotypes have only recently started to be described in populations. Here, we use a highly innovative custom next-generation sequencing method that provides a state-of-art characterization of KIR and HLA diversity in 706 individuals from eight unique South American populations: five Amerindian populations from Brazil (three Guarani and two Kaingang); one Amerindian population from Paraguay (Aché); and two urban populations from Southern Brazil (European and Japanese descendants from Curitiba). For the first time, we describe complete high-resolution KIR haplotypes in South American populations, exploring copy number, linkage disequilibrium, and KIR–HLA interactions. We show that all Amerindians analyzed to date exhibit the lowest numbers of KIR–HLA interactions among all described worldwide populations, and that 83–97% of their KIR–HLA interactions rely on a few HLA-C molecules. Using multiple approaches, we found signatures of strong purifying selection on the KIR centromeric region, which codes for the strongest NK cell educator receptors, possibly driven by the limited HLA diversity in these populations. Our study expands the current knowledge of KIR genetic diversity in populations to understand KIR–HLA coevolution and its impact on human health and survival.  相似文献   
94.
Calreticulin (CALR) is recurrently mutated in myelofibrosis via a frameshift that removes an endoplasmic reticulum retention signal, creating a neoepitope potentially targetable by immunotherapeutic approaches. We developed a specific rat monoclonal IgG2α antibody, 4D7, directed against the common sequence encoded by both insertion and deletion mutations. 4D7 selectively bound to cells co‐expressing mutant CALR and thrombopoietin receptor (TpoR) and blocked JAK‐STAT signalling, TPO‐independent proliferation and megakaryocyte differentiation of mutant CALR myelofibrosis progenitors by disrupting the binding of CALR dimers to TpoR. Importantly, 4D7 inhibited proliferation of patient samples with both insertion and deletion CALR mutations but not JAK2 V617F and prolonged survival in xenografted bone marrow models of mutant CALR‐dependent myeloproliferation. Together, our data demonstrate a novel therapeutic approach to target a problematic disease driven by a recurrent somatic mutation that would normally be considered undruggable.  相似文献   
95.
96.
BackgroundLow- and middle-income countries (LMICs) are experiencing major increases in diabetes and cardiovascular conditions linked to overweight and obesity. Lifestyle interventions such as the United States National Diabetes Prevention Program (DPP) developed in high-income countries require adaptation and cultural tailoring for LMICs. The objective of this study was to evaluate the efficacy of “Lifestyle Africa,” an adapted version of the DPP tailored for an underresourced community in South Africa compared to usual care.Methods and findingsParticipants were residents of a predominantly Xhosa-speaking urban township of Cape Town, South Africa characterized by high rates of poverty. Participants with body mass index (BMI) ≥ 25 kg/m2 who were members of existing social support groups or “clubs” receiving health services from local nongovernmental organizations (NGOs) were enrolled in a cluster randomized controlled trial that compared Lifestyle Africa (the intervention condition) to usual care (the control condition). The Lifestyle Africa intervention consisted of 17 video-based group sessions delivered by trained community health workers (CHWs). Clusters were randomized using a numbered list of the CHWs and their assigned clubs based on a computer-based random allocation scheme. CHWs, participants, and research team members could not be blinded to condition. Percentage weight loss (primary outcome), hemoglobin A1c (HbA1c), blood pressure, triglycerides, and low-density lipoprotein (LDL) cholesterol were assessed 7 to 9 months after enrollment. An individual-level intention-to-treat analysis was conducted adjusting for clustering within clubs and baseline values. Trial registration is at ClinicalTrials.gov (NCT03342274). Between February 2018 and May 2019, 782 individuals were screened, and 494 were enrolled. Participants were predominantly retired (57% were receiving a pension) and female (89%) with a mean age of 68 years. Participants from 28 clusters were allocated to Lifestyle Africa (15, n = 240) or usual care (13, n = 254). Fidelity assessments indicated that the intervention was generally delivered as intended. The modal number of sessions held across all clubs was 17, and the mean attendance of participants across all sessions was 61%. Outcome assessment was completed by 215 (90%) intervention and 223 (88%) control participants. Intent-to-treat analyses utilizing multilevel modeling included all randomized participants. Mean weight change (primary outcome) was −0.61% (95% confidence interval (CI) = −1.22, −0.01) in Lifestyle Africa and −0.44% (95% CI = −1.06, 0.18) in control with no significant difference (group difference = −0.17%; 95% CI = −1.04, 0.71; p = 0.71). However, HbA1c was significantly lower at follow-up in Lifestyle Africa compared to the usual care group (mean difference = −0.24, 95% CI = −0.39, −0.09, p = 0.001). None of the other secondary outcomes differed at follow-up: systolic blood pressure (group difference = −1.36; 95% CI = −6.92, 4.21; p = 0.63), diastolic blood pressure (group difference = −0.39; 95% CI = −3.25, 2.30; p = 0.78), LDL (group difference = −0.07; 95% CI = −0.19, 0.05; p = 0.26), triglycerides (group difference = −0.02; 95% CI = −0.20, 0.16; p = 0.80). There were no unanticipated problems and serious adverse events were rare, unrelated to the intervention, and similar across groups (11 in Lifestyle Africa versus 13 in usual care). Limitations of the study include the lack of a rigorous dietary intake measure and the high representation of older women.ConclusionsIn this study, we found that Lifestyle Africa was feasible for CHWs to deliver and, although it had no effect on the primary outcome of weight loss or secondary outcomes of blood pressure or triglycerides, it had an apparent small significant effect on HbA1c. The study demonstrates the potential feasibility of CHWs to deliver a program without expert involvement by utilizing video-based sessions. The intervention may hold promise for addressing cardiovascular disease (CVD) and diabetes at scale in LMICs.Trial registrationClinicalTrials.gov NCT03342274.

In a cluster randomized trial, Delwyn Catley and colleagues evaluate an adapted version of the Diabetes Prevention Program in South Africa.  相似文献   
97.
Prenatal stress is a neuropsychiatric risk factor, and effects may be mediated by prenatal oxidative stress. Cell types in the brain sensitive to oxidative stress—cortical microglia and cortical and hippocampal interneurons—may be altered by oxidative stress generated during prenatal stress and may be neurobiological substrates for altered behavior. Our objective was to determine the critical nature of oxidative stress in prenatal stress effects by manipulating prenatal antioxidants. CD1 mouse dams underwent restraint embryonic day 12 to 18 three times daily or no stress and received intraperitoneal injections before each stress period of vehicle, N-acetylcysteine (200 mg/kg daily), or astaxanthin (30 mg/kg before first daily stress, 10 mg/kg before second/third stresses). Adult male and female offspring behavior, microglia, and interneurons were assessed. Results supported the hypothesis that prenatal stress-induced oxidative stress affects microglia; microglia ramification increased after prenatal stress, and both antioxidants prevented these effects. In addition, N-acetylcysteine or astaxanthin was effective in preventing distinct male and female interneuron changes; decreased female medial frontal cortical parvalbumin interneurons was prevented by either antioxidant; increased male medial frontal cortical parvalbumin interneurons was prevented by N-acetylcysteine and decreased male hippocampal GAD67GFP+ cells prevented by astaxanthin. Prenatal stress-induced increased anxiety-like behavior and decreased sociability were not prevented by prenatal antioxidants. Sensorimotor gating deficits in males was partially prevented by prenatal astaxanthin. This study demonstrates the importance of oxidative stress for persistent impacts on offspring cortical microglia and interneurons, but did not link these changes with anxiety-like, social, and sensorimotor gating behaviors.  相似文献   
98.
Myogenesis is an intricate process that coordinately engages multiple intracellular signaling cascades. The Rho family GTPase RhoA is known to promote myogenesis, however, the mechanisms controlling its regulation in myoblasts have yet to be fully elucidated. We show here that the SH2-containing protein tyrosine phosphatase, SHP-2, functions as an early modulator of myogenesis by regulating RhoA. When MyoD was expressed in fibroblasts lacking functional SHP-2, muscle-specific gene activity was impaired and abolition of SHP-2 expression by RNA interference inhibited muscle differentiation. By using SHP-2 substrate-trapping mutants, we identified p190-B RhoGAP as a SHP-2 substrate. When dephosphorylated, p190-B RhoGAP has been shown to stimulate the activation of RhoA. During myogenesis, p190-B RhoGAP was tyrosyl dephosphorylated concomitant with the stimulation of SHP-2's phosphatase activity. Moreover, overexpression of a catalytically inactive mutant of SHP-2 inhibited p190-B RhoGAP tyrosyl dephosphorylation, RhoA activity, and myogenesis. These observations strongly suggest that SHP-2 dephosphorylates p190-B RhoGAP, leading to the activation of RhoA. Collectively, these data provide a mechanistic basis for RhoA activation in myoblasts and demonstrate that myogenesis is critically regulated by the actions of SHP-2 on the p190-B Rho GAP/RhoA pathway.  相似文献   
99.
Calophyllum brasiliense (Clusiaceae/Guttiferae) is a native Brazilian medicinal plant traditionally used against several diseases, including infectious pathologies. Crude methanolic extracts (CME) and two fractions, denoted non-polar (soluble in chloroform) and polar (nonsoluble in chloroform), were prepared from different parts of the plant (roots, stems, leaves, flowers and fruits) and studied. The following compounds were isolated and tested against pathogenic bacteria and yeasts by determination of the minimal inhibitory concentration (MIC): brasiliensic acid (1), gallic acid (2), epicatechin (3), protocatechuic acid (4), friedelin (5) and 1,5-dihydroxyxanthone (6). The results indicated that all the parts of the plant exhibited antimicrobial activity against Gram-positive bacteria, which are selectively inhibited by components of C. brasiliense. No activity was observed against Gram-negative bacteria and yeasts tested. Regarding the isolated compounds, substance 4 showed antimicrobial activity against all the tested microorganisms, whereas compound 6 exhibited antimicrobial activity only against Gram-positive bacteria. The results from the current study confirm and justify the popular use of this plant to treat infectious processes.  相似文献   
100.
Necrosis and apoptosis differentially contribute to myocardial injury. Determination of the contribution of these processes in ischemia-reperfusion injury would allow for the preservation of myocardial tissue. Necrosis and apoptosis were investigated in Langendorff-perfused rabbit hearts (n = 47) subjected to 0 (Control group), 5 (GI-5), 10 (GI-10), 15 (GI-15), 20 (GI-20), 25 (GI-25), and 30 min (GI-30) of global ischemia (GI) and 120 min of reperfusion. Myocardial injury was determined by triphenyltetrazolium chloride (TTC) staining, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL), bax, bcl2, poly(ADP)ribose polymerase (PARP) cleavage, caspase-3, -8, and -9 cleavage and activity, Fas ligand (FasL), and Fas-activated death domain (FADD). The contribution of apoptosis was determined separately (n = 42) using irreversible caspase-3, -8, and -9 inhibitors. Left ventricular peak developed pressure (LVPDP) and systolic shortening (SS) were significantly decreased and infarct size and TUNEL-positive cells were significantly increased (P < 0.05 vs. Control group) at GI-20, GI-25, and GI-30. Proapoptotic bax, PARP cleavage, and caspase-3 and -9 cleavage and activity were apparent at GI-5 to GI-30. Fas, FADD, and caspase-8 cleavage and activity were unaltered. Irreversible inhibition of caspase-3 and -9 activity significantly decreased (P < 0.05) infarct size at GI-25 and GI-30 but had no effect on LVPDP or SS. Myocardial injury results from a significant increase in both necrosis and apoptosis (P < 0.05 vs. Control group) evident by TUNEL, TTC staining, and caspase activity at GI-20. Intrinsic proapoptotic activation is evident early during ischemia but does not significantly contribute to infarct size before GI-25. The contribution of necrosis to infarct size at GI-20, GI-25, and GI-30 is significantly greater than that of apoptosis. Apoptosis is significantly decreased by caspase inhibition during early reperfusion, but this protection does not improve immediate postischemic functional recovery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号