首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1196篇
  免费   89篇
  1285篇
  2023年   8篇
  2022年   29篇
  2021年   48篇
  2020年   21篇
  2019年   24篇
  2018年   30篇
  2017年   28篇
  2016年   44篇
  2015年   62篇
  2014年   78篇
  2013年   87篇
  2012年   115篇
  2011年   104篇
  2010年   55篇
  2009年   44篇
  2008年   80篇
  2007年   74篇
  2006年   56篇
  2005年   48篇
  2004年   44篇
  2003年   40篇
  2002年   40篇
  2001年   6篇
  2000年   8篇
  1999年   9篇
  1998年   6篇
  1997年   8篇
  1996年   8篇
  1994年   6篇
  1993年   4篇
  1992年   9篇
  1991年   5篇
  1990年   9篇
  1989年   8篇
  1988年   3篇
  1987年   5篇
  1985年   3篇
  1984年   4篇
  1983年   4篇
  1982年   3篇
  1981年   2篇
  1979年   2篇
  1977年   1篇
  1976年   1篇
  1975年   4篇
  1970年   2篇
  1967年   1篇
  1954年   1篇
  1952年   1篇
  1947年   1篇
排序方式: 共有1285条查询结果,搜索用时 15 毫秒
111.

Background and aims

Soil factors are driving forces that influence spatial distribution and functional traits of plant species. We test whether two anchor morphological traits—leaf mass per area (LMA) and leaf dry matter content (LDMC)—are significantly related to a broad range of leaf nutrient concentrations in Mediterranean woody plant species. We also explore the main environmental filters (light availability, soil moisture and soil nutrients) that determine the patterns of these functional traits in a forest stand.

Methods

Four morphological and 19 chemical leaf traits (macronutrients and trace elements and δ13C and δ15N signatures) were analysed in 17 woody plant species. Community-weighted leaf traits were calculated for 57 plots within the forest. Links between LMA, LDMC and other leaf traits were analysed at the species and the community level using standardised major axis (SMA) regressions

Results

LMA and LDMC were significantly related to many leaf nutrient concentrations, but only when using abundance-weighted values at community level. Among-traits links were much weaker for the cross-species analysis. Nitrogen isotopic signatures were useful to understand different resource-use strategies. Community-weighted LMA and LDMC were negatively related to light availability, contrary to what was expected.

Conclusion

Community leaf traits have parallel shifts along the environmental factors that determine the community assembly, even though they are weakly related across individual taxa. Light availability is the main environmental factor determining this convergence of the community leaf traits.  相似文献   
112.
From 1913 to 1980, two zinc smelters in Palmerton, Pennsylvania, emitted large quantities of atmospheric pollutants nearly eliminating forests along a ridge above the town. In 2008, a remediation treatment was applied to the land above one of the smelters that included the planting of several locally adapted plant species. It also included mineral fertilization and mycorrhizal inoculation. One of the species, the Pitch pine (Pinus rigida, Mill.), is a native tree that is both tolerant of metalliferous soils and obligatorily ectomycorrhizal. This report summarizes the results of two observational studies conducted 5 years after the remediation treatment. The first study's objective was to compare ectomycorrhizal communities on treated Pitch pine saplings, with communities on naturally regenerating saplings in an adjacent non-remediated area. The second study's objective was to determine if the composition of the fungal communities on root tips of naturally regenerating Pitch pine saplings differed with distance from the smelters. Fungal community compositions were determined using internal transcribed spacer rRNA sequences. Comparisons of sequences from the remediated and non-remediated sites revealed that communities at the remediated sites had lower taxonomic diversity and were dominated by members of a genus in the remediation inoculant. The results of the smelter-proximity study indicated that although fungal diversity did not differ markedly with distance from the smelters, the relative abundances of some taxa were greater on saplings growing directly above the smelters, where the soils contained highest concentrations of zinc and cadmium.  相似文献   
113.
The terrestrial water cycle links the soil and atmosphere moisture reservoirs through four fluxes: precipitation, evaporation, runoff, and atmospheric moisture convergence (net import of water vapor to balance runoff). Each of these processes is essential for sustaining human and ecosystem well-being. Predicting how the water cycle responds to changes in vegetation cover remains a challenge. Recently, changes in plant transpiration across the Amazon basin were shown to be associated disproportionately with changes in rainfall, suggesting that even small declines in transpiration (e.g., from deforestation) would lead to much larger declines in rainfall. Here, constraining these findings by the law of mass conservation, we show that in a sufficiently wet atmosphere, forest transpiration can control atmospheric moisture convergence such that increased transpiration enhances atmospheric moisture import and results in water yield. Conversely, in a sufficiently dry atmosphere increased transpiration reduces atmospheric moisture convergence and water yield. This previously unrecognized dichotomy can explain the otherwise mixed observations of how water yield responds to re-greening, as we illustrate with examples from China's Loess Plateau. Our analysis indicates that any additional precipitation recycling due to additional vegetation increases precipitation but decreases local water yield and steady-state runoff. Therefore, in the drier regions/periods and early stages of ecological restoration, the role of vegetation can be confined to precipitation recycling, while once a wetter stage is achieved, additional vegetation enhances atmospheric moisture convergence and water yield. Recent analyses indicate that the latter regime dominates the global response of the terrestrial water cycle to re-greening. Evaluating the transition between regimes, and recognizing the potential of vegetation for enhancing moisture convergence, are crucial for characterizing the consequences of deforestation as well as for motivating and guiding ecological restoration.  相似文献   
114.
Insect–fungal interactions are an important but understudied aspect of tropical forest ecology. Here we present the first large‐scale study of insect communities feeding on the reproductive structures of macrofungi (basidiomes) in the Neotropics. This trophic interaction is not well characterized in most ecosystems; however, beetle consumption of basidiomes is thought to be affected by fungal factors, via mechanisms analogous to those observed in plant–herbivore interactions and in some interactions with fungi as hosts in the Holarctic region. We investigated how the composition of beetle assemblages varies as a function of fungal taxonomic distance, basidiome consistency, and hyphal systems. We collected 367 basidiomes belonging to the orders Polyporales and Hymenochaetales in the subtropical Araucaria angustifolia forest region of southern Brazil, along with any fauna present or without it. Basidiomes were maintained individually in the laboratory in plastic containers for up to three months to allow beetles to develop to adulthood, at which point the beetles were collected. We found that 207 basidiome specimens representing 40 species were associated with beetles. We recorded 447 occurrences of Coleoptera, representing 90 morphospecies from 20 families. We found that assemblages of fungivorous Coleoptera were more similar among more closely related fungi. Furthermore, the beetle assemblages varied as a function of basidiome toughness, which is influenced by sporocarp consistency and hyphal system type. The associations between beetles and basidiomes resemble those reported previously in temperate zones, suggesting continuity in the structure of such associations across a wide latitudinal range.  相似文献   
115.
Mitochondrial complex I (CI) deficiency is the most common oxidative phosphorylation disorder described. It shows a wide range of phenotypes with poor correlation within genotypes. Herein we expand the clinics and genetics of CI deficiency in the brazilian population by reporting three patients with pathogenic (c.640G>A, c.1268C>T, c.1207dupG) and likely pathogenic (c.766C>T) variants in the NDUFV1 gene. We show the mutation c.766C>T associated with a childhood onset phenotype of hypotonia, muscle weakness, psychomotor regression, lethargy, dysphagia, and strabismus. Additionally, this mutation was found to be associated with headaches and exercise intolerance in adulthood. We also review reported pathogenic variants in NDUFV1 highlighting the wide phenotypic heterogeneity in CI deficiency.  相似文献   
116.
Summary Chlorophyll-a and primary production on the euphotic zone of the N-NW Spanish shelf were studied at 125 stations between 1984 and 1992. Three geographic areas (Cantabrian Sea, Rías Altas and Was Baixas), three bathymetric ranges (20 to 60 m, 60 to 150 m and stations deeper than 200 m), and four oceanographic stages (spring and autumn blooms, summer upwelling, summer stratification and winter mixing) were considered. One of the major sources of variability of chlorophyll and production data was season. Bloom and summer upwelling stages have equivalent mean and maximum values. Average chlorophyll-a concentrations approximately doubled in every step of the increasing productivity sequence: winter mixing — summer stratification — high productivity (upwelling and bloom) stages. Average primary production rates increased only 60% in the described sequence. Mean (± sd) values of chlorophyll-a and primary production rates during the high productivity stages were 59.7 ± 39.5 mg Chl-a m–2 and 86.9 ± 44.0 mg C m–2 h–1, respectively. Significant differences in both chlorophyll and primary production resulted between geographic areas in most stages. Only 27 stations showed the effects of the summer upwelling that affected coastal areas in the Cantabrian Sea and Rías Baixas shelf, but also shelf-break stations in the Rías Altas area. The Rías Baixas area had lower chlorophyll than both the Rías Altas and the Cantabrian Sea areas during spring and autumn blooms, but higher during summer upwelling events. On the contrary, primary production rates were higher in the Rías Baixas area during blooms in spring and autumn. Mid-shelf areas showed the highest chlorophyll concentrations during high productivity stages, probably due to the existence of frontal zones in all geographic areas considered. The estimated phytoplankton growth rates were comparable to those of other coastal upwelling systems, with average values lower than the maximum potential growth rates. Doubling rates for upwelling and stratification stages in the northern and Rías Altas shelf areas were equivalent, despite larger biomass accumulations during upwelling events. Low turnover rates of the existing biomass in the Rías Baixas shelf in upwelling stages suggests that the accumulation of phytoplankton was due mainly to the export from the highly productive rías, while the contribution of in situ production to these accumulations was relatively lower.  相似文献   
117.
Thyroid hormones are essential for cellular metabolism, growth, and development. In particular, an adequate supply of thyroid hormones is critical for fetal neurodevelopment. Thyroid hormone tissue activation and inactivation in brain, liver, and other tissues is controlled by the deiodinases through the removal of iodine atoms. Selenium, an essential element critical for deiodinase activity, is sensitive to mercury and, therefore, when its availability is reduced, brain development might be altered. This review addresses the possibility that high exposures to the organometal, methylmercury (MeHg), may perturb neurodevelopmental processes by selectively affecting thyroid hormone homeostasis and function.  相似文献   
118.
Prenatal stress is a neuropsychiatric risk factor, and effects may be mediated by prenatal oxidative stress. Cell types in the brain sensitive to oxidative stress—cortical microglia and cortical and hippocampal interneurons—may be altered by oxidative stress generated during prenatal stress and may be neurobiological substrates for altered behavior. Our objective was to determine the critical nature of oxidative stress in prenatal stress effects by manipulating prenatal antioxidants. CD1 mouse dams underwent restraint embryonic day 12 to 18 three times daily or no stress and received intraperitoneal injections before each stress period of vehicle, N-acetylcysteine (200 mg/kg daily), or astaxanthin (30 mg/kg before first daily stress, 10 mg/kg before second/third stresses). Adult male and female offspring behavior, microglia, and interneurons were assessed. Results supported the hypothesis that prenatal stress-induced oxidative stress affects microglia; microglia ramification increased after prenatal stress, and both antioxidants prevented these effects. In addition, N-acetylcysteine or astaxanthin was effective in preventing distinct male and female interneuron changes; decreased female medial frontal cortical parvalbumin interneurons was prevented by either antioxidant; increased male medial frontal cortical parvalbumin interneurons was prevented by N-acetylcysteine and decreased male hippocampal GAD67GFP+ cells prevented by astaxanthin. Prenatal stress-induced increased anxiety-like behavior and decreased sociability were not prevented by prenatal antioxidants. Sensorimotor gating deficits in males was partially prevented by prenatal astaxanthin. This study demonstrates the importance of oxidative stress for persistent impacts on offspring cortical microglia and interneurons, but did not link these changes with anxiety-like, social, and sensorimotor gating behaviors.  相似文献   
119.
120.
Climate models indicate the Arctic will undergo dramatic environmental change with forecasted increases in temperature and river runoff. Saffron cod (Eleginus gracilis) is abundant in nearshore waters and appears in the diet of many Arctic sea birds and marine mammals; however, little is known about its early ecology and consequently how they might be affected by environmental changes. We aimed to characterize the mechanisms of spatial and ontogenetic variation in trophic biomarkers (lipid classes, fatty acids and bulk C and N stable isotopes) of saffron cod from the Western Arctic, Chukchi and Bering Seas. Size-standardized analyses showed a significant difference in lipid condition metrics and trophic biomarkers as a function of survey location. Both ontogeny and sampling location played an important role in determining lipid stores with elevated levels in both small offshore juveniles (<55 mm) and larger inshore juveniles (>75 mm). Higher lipid storage in Arctic juveniles was associated with elevated levels of diatom fatty acid markers, but not with nearshore carbon input. Increased lipids were found in age-1 juveniles from Prudhoe Bay in the Western Beaufort that were feeding at a lower trophic level than similarly sized age-0 juveniles from surface trawls in the Bering Sea. The use of otolith annuli revealed two discrete patterns of growth that help explain the trade-offs between energy storage and rapid growth that diverge between the Arctic and Bering Sea. Laboratory temperature-growth experiments confirmed that saffron cod have a eurythermal growth response and are able to store excess lipids at temperatures as high as 20 °C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号