首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75727篇
  免费   5057篇
  国内免费   9篇
  2023年   525篇
  2022年   667篇
  2021年   1333篇
  2020年   1065篇
  2019年   1234篇
  2018年   2264篇
  2017年   2098篇
  2016年   2770篇
  2015年   3632篇
  2014年   3752篇
  2013年   4969篇
  2012年   5811篇
  2011年   5280篇
  2010年   3432篇
  2009年   2776篇
  2008年   4060篇
  2007年   3819篇
  2006年   3630篇
  2005年   3133篇
  2004年   3018篇
  2003年   2734篇
  2002年   2505篇
  2001年   1697篇
  2000年   1635篇
  1999年   1301篇
  1998年   664篇
  1997年   497篇
  1996年   481篇
  1995年   460篇
  1994年   343篇
  1993年   340篇
  1992年   668篇
  1991年   575篇
  1990年   518篇
  1989年   506篇
  1988年   492篇
  1987年   438篇
  1986年   419篇
  1985年   408篇
  1984年   420篇
  1983年   289篇
  1982年   281篇
  1981年   208篇
  1980年   219篇
  1979年   265篇
  1978年   254篇
  1975年   227篇
  1974年   257篇
  1973年   258篇
  1972年   216篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
11.
12.
Summary Eicosapentaenoic acid (EPA) volumetric productivity from an outdoor chemostat culture ofPhaeodactylum tricornutum UTEX 640 in a 50-l tubular photobioreactor varies with dilution rate, reaching a maximum of 47.8 mg l–1 d–1 at D=0.36 d–1. Continuous culture at high dilution rates' is proposed as the most adequate operating mode to maximize polyunsaturated fatty acid production.  相似文献   
13.
The fungal fruiting body or mushroom is a multicellular structure essential for sexual reproduction. It is composed of dikaryotic cells that contain one haploid nucleus from each mating partner sharing the same cytoplasm without undergoing nuclear fusion. In the mushroom, the pileus bears the hymenium, a layer of cells that includes the specialized basidia in which nuclear fusion, meiosis, and sporulation occur. Coprinopsis cinerea is a well-known model fungus used to study developmental processes associated with the formation of the fruiting body. Here we describe that knocking down the expression of Atr1 and Chk1, two kinases shown to be involved in the response to DNA damage in a number of eukaryotic organisms, dramatically impairs the ability to develop fruiting bodies in C. cinerea, as well as other developmental decisions such as sclerotia formation. These developmental defects correlated with the impairment in silenced strains to sustain an appropriated dikaryotic cell cycle. Dikaryotic cells in which chk1 or atr1 genes were silenced displayed a higher level of asynchronous mitosis and as a consequence aberrant cells carrying an unbalanced dose of nuclei. Since fruiting body initiation is dependent on the balanced mating-type regulator doses present in the dikaryon, we believe that the observed developmental defects were a consequence of the impaired cell cycle in the dikaryon. Our results suggest a connection between the DNA damage response cascade, cell cycle regulation, and developmental processes in this fungus.  相似文献   
14.
15.
Microbial diversity and distribution are topics of intensive research. In two companion papers in this issue, we describe the results of the Cariaco Microbial Observatory (Caribbean Sea, Venezuela). The Basin contains the largest body of marine anoxic water, and presents an opportunity to study protistan communities across biogeochemical gradients. In the first paper, we survey 18S ribosomal RNA (rRNA) gene sequence diversity using both Sanger- and pyrosequencing-based approaches, employing multiple PCR primers, and state-of-the-art statistical analyses to estimate microbial richness missed by the survey. Sampling the Basin at three stations, in two seasons, and at four depths with distinct biogeochemical regimes, we obtained the largest, and arguably the least biased collection of over 6000 nearly full-length protistan rRNA gene sequences from a given oceanographic regime to date, and over 80 000 pyrosequencing tags. These represent all major and many minor protistan taxa, at frequencies globally similar between the two sequence collections. This large data set provided, via the recently developed parametric modeling, the first statistically sound prediction of the total size of protistan richness in a large and varied environment, such as the Cariaco Basin: over 36 000 species, defined as almost full-length 18S rRNA gene sequence clusters sharing over 99% sequence homology. This richness is a small fraction of the grand total of known protists (over 100 000–500 000 species), suggesting a degree of protistan endemism.  相似文献   
16.
In male Wistar rats, the inhalation exposure to acrylonitrile (AN), 271 mg X m-3, 8 hours a day, 5 days a week, did not affect protein sulfhydryl concentration in liver and blood and decreased glutathione concentration in the liver, but not in the brain at the end of the fifth exposure. The urinary excretion of the main AN metabolites, thioethers (AN-mercapturic acids) and thiocyanate was proportional to the inhaled AN concentration (57, 125, 271 mg X m-3, respectively) in a single exposure for 12 hours, and their mutual ratio was greatly different from that after injection of AN. The results revealed that the urinary excretion of thioethers is a very sensitive and dose-related indicator of exposure to AN and extrapolation of the results indicates that the exposure to AN concentration below 10 mg X m-3 could thus be demonstrated.  相似文献   
17.
18.
In recent years, Staphylococcus epidermidis has become a major nosocomial pathogen and the most common cause of intravascular catheter-related bacteremia, which can increase morbidity and mortality and significantly affect patient recovery. We report a draft genome sequence of Staphylococcus epidermidis AU12-03, isolated from an intravascular catheter tip.  相似文献   
19.
Genome-wide analysis of the SET DOMAIN GROUP family in grapevine   总被引:1,自引:0,他引:1  
The SET DOMAIN GROUP (SDG) proteins represent an evolutionarily-conserved family of epigenetic regulators present in eukaryotes and are putative candidates for the catalysis of lysine methylation in histones. Plant genomes analyses of this family have been performed in arabidopsis, maize, and rice and functional studies have shown that SDG genes are involved in the control of plant development. In this work, we describe the identification and structural characterization of SDG genes in the Vitis vinifera genome. This analysis revealed the presence of 33 putative SDG genes that can be grouped into different classes, as it has been previously described for plants. In addition to the SET domain, the proteins identified possessed other domains in the different classes. As part of our study regarding the growth and development of grapevine, we selected eight genes and their expression levels were analyzed in representative vegetative and reproductive organs of this species. The selected genes showed different patterns of expression during inflorescence and fruit development, suggesting that they participate in these processes. Furthermore, we showed that the expression of selected SDGs changes during viral infection, using as a model Grapevine Leafroll Associated Virus 3-infected symptomatic grapevine leaves and fruits. Our results suggest that developmental changes caused by this virus could be the result of alterations in SDG expression.  相似文献   
20.
1. In rat kidney cortex, outer and inner medulla the development of activities of seven enzymes was investigated during postnatal ontogeny (10, 20, 30, 60 and 90 days of age). The enzymes were selected in such a manner, as to characterize most of the main metabolic pathways of energy supplying metabolism: hexokinase (glucose phosphorylation, HK), glycerol-3-phosphate dehydrogenase (glycerolphosphate metabolism or shunt, GPDH), triose phosphate dehydrogenase (glycolytic carbohydrate breakdown, TPDH), lactate dehydrogenase (lactate metabolism, LDH), citrate synthase (tricarboxylic acid cycle, aerobic metabolism, CS), malate NAD dehydrogenase (tricarboxylic acid cycle, intra-extra mitochondrial hydrogen transport, MDH) and 3-hydroxyacyl-CoA-dehydrogenase (fatty acid catabolism, HOADH). 2. The renal cortex already differs metabolically from the medullar structures on the 10th day of life. It displays a high activity of aerobic breakdown of both fatty acids and carbohydrates. Its metabolic capacity further increases up to the 30th day of life. 3. The outer medullar structure is not grossly different from the inner medulla on the 10th day of life. Further it differentiates into a highly aerobic tissue mainly able to utilize carbohydrates. It can, however, to some extent, also utilize fatty acids aerobically and produce lactate from carbohydrates anaerobically. 4. The inner medullar structure is best equipped to utilize carbohydrates by anaerobic glycolysis, forming lactate. This feature is already pronounced on the 10th day of life, its capacity increases to some extent during postnatal development, being highest between the 10th and the 60th day of life.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号