首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78739篇
  免费   5241篇
  国内免费   11篇
  83991篇
  2023年   530篇
  2022年   682篇
  2021年   1385篇
  2020年   1102篇
  2019年   1266篇
  2018年   2336篇
  2017年   2145篇
  2016年   2882篇
  2015年   3770篇
  2014年   3882篇
  2013年   5205篇
  2012年   6027篇
  2011年   5580篇
  2010年   3601篇
  2009年   2951篇
  2008年   4267篇
  2007年   4017篇
  2006年   3839篇
  2005年   3285篇
  2004年   3201篇
  2003年   2892篇
  2002年   2665篇
  2001年   1723篇
  2000年   1662篇
  1999年   1332篇
  1998年   686篇
  1997年   521篇
  1996年   513篇
  1995年   484篇
  1994年   347篇
  1993年   354篇
  1992年   693篇
  1991年   585篇
  1990年   539篇
  1989年   513篇
  1988年   487篇
  1987年   446篇
  1986年   420篇
  1985年   418篇
  1984年   427篇
  1983年   283篇
  1982年   276篇
  1981年   214篇
  1980年   218篇
  1979年   266篇
  1978年   249篇
  1975年   228篇
  1974年   254篇
  1973年   249篇
  1972年   211篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
The substrate specificity of acyl-acyl carrier protein (ACP) thioesterases (EC 3.1.2.14) determines the fatty acids available for the biosynthesis of storage and membrane lipids in seeds. In order to determine the mechanisms involved in the biosynthesis of fatty acids in sunflower seeds (Helianthus annuus L.), we isolated, cloned and sequenced a cDNA clone of acyl-ACP thioesterase from developing sunflower seeds, HaFatA1. Through the heterologous expression of HaFatA1 in Escherichia coli we have purified and characterized this enzyme, showing that sunflower HaFatA1 cDNA encodes a functional thioesterase with preference for monounsaturated acyl-ACPs. The HaFatA1 thioesterase was most efficient (kcat/Km) in catalyzing oleoyl-ACP, both in vivo and in vitro. By comparing this sequence with those obtained from public databases, we constructed a phylogenetic tree that included FatA and FatB thioesterases, as well as related prokaryotic proteins. The phylogenetic relationships support the endosymbiotic theory of the origin of eukaryotic cells and the suggestion that eubacteria from the -subdivision were the guest cells in the symbiosis with archaea. These prokaryotic proteins are more homologous to plant FatB, suggesting that the ancient thioesterases were more similar to FatB. Finally, using the available structure prediction methods, a 3D model of plant acyl-ACP thioesterases is proposed that reflects the combined data from direct mutagenesis and chimera studies. In addition, the model was tested by mutating the residues proposed to interact with the ACP protein in the FatA thioesterase by site-directed mutagenesis. The results indicate that this region is involved in the stabilization of the substrate at the active site.  相似文献   
982.
In citrus, damage produced by salinity is mostly due to toxic ion accumulation, since this salt-sensitive crop adjusts osmotically with high efficiency. In spite of this observation, the putative role of sugars as osmolites under salinity remains unknown. In this work, we have studied carbohydrate contents (total hexoses, sucrose and starch) in leaves and roots of citrus grown under increasing salinity. The experimental system was characterized through the analyses of several parameters known to be strongly affected by salinity in citrus, such as chloride accumulation, photosynthetic rate, ethylene production and leaf abscission. Three-year-old plants of the Clementina de Nules cultivar grafted on Carrizo citrange rootstock were watered with three different levels of salinity (NaCl was added to the watering solutions to achieve final concentrations of 30, 60 and 90 mM). Data indicate that salt stress caused an accumulation of chloride ions in a way proportional to the external increase in NaCl. The adverse conditions reduced CO2 assimilation, increased ethylene production and triggered abscission of the injured leaves. Data also show that salinity induced progressive depletions of carbohydrates in leaves and roots of citrus plants. This observation clearly indicates that sugar accumulation is not a main component of the osmotic adjustment machinery in citrus.  相似文献   
983.
984.
A new series of donepezil–tacrine hybrid related derivatives have been synthesised as dual acetylcholinesterase inhibitors that could bind simultaneously to the peripheral and catalytic sites of the enzyme. These new hybrids combined a tacrine, 6-chlorotacrine or acridine unit as catalytic binding site and indanone (the heterocycle present in donepezil) or phthalimide moiety as peripheral binding site of the enzyme, connected through a different linker tether length. One of the synthesised compounds emerged as a potent and selective AChE inhibitor, which is able to displace propidium in a competition assay. These results seem to confirm the ability of this inhibitor to bind simultaneously to both sites of the enzyme and make it a promising lead for developing disease-modifying drugs for the future treatment of Alzheimer’s disease. To gain insight into the molecular determinants that modulate the inhibitory activity of these compounds, a molecular modelling study was performed to explore their binding to the enzyme.  相似文献   
985.
Exposure of cerebellar granule neurones in 25 mm KCl HEPES-containing Locke's buffer (pH 7.4) to 50-100 microm SIN-1 during 2 h decreased the steady-state free cytosolic Ca2+ concentration ([Ca2+]i) from 168 +/- 33 nm to 60 +/- 10 nm, whereas exposure to > or = 0.3 mm SIN-1 produced biphasic kinetics: (i) decrease of [Ca2+]i during the first 30 min, reaching a limiting value of 75 +/- 10 nm (due to inactivation of L-type Ca2+ channels) and (ii) a delayed increase of [Ca2+]i at longer exposures, which correlated with SIN-1-induced necrotic cell death. Both effects of SIN-1 on [Ca2+]i are blocked by superoxide dismutase plus catalase and by Mn(III)tetrakis(4-benzoic acid)porphyrin chloride. Supplementation of Locke's buffer with catalase before addition of 0.5-1 mm SIN-1 had no effect on the decrease of [Ca2+]i but further delayed and attenuated the increase of [Ca2+]i observed after 60-120 min exposure to SIN-1 and also protected against SIN-1-induced necrotic cell death. alpha-Tocopherol, the potent NMDA receptor antagonist (+)-MK-801 and the N- and P-type Ca2+ channels blocker omega-conotoxin MVIIC had no effect on the alterations of [Ca2+]i upon exposure to SIN-1. However, inhibition of the plasma membrane Ca2+ ATPase can account for the increase of [Ca2+]i observed after 60-120 min exposure to 0.5-1 mm SIN-1. It is concluded that L-type Ca2+ channels are a primary target of SIN-1-induced extracellular nitrosative/oxidative stress, being inactivated by chronic exposure to fluxes of peroxynitrite of 0.5-1 microm/min, while higher concentrations of peroxynitrite and hydrogen peroxide are required for the inhibition of the plasma membrane Ca2+ ATPase and induction of necrotic cell death, respectively.  相似文献   
986.
We simulate the aggregation thermodynamics and kinetics of proteins L and G, each of which self-assembles to the same alpha/beta [corrected] topology through distinct folding mechanisms. We find that the aggregation kinetics of both proteins at an experimentally relevant concentration exhibit both fast and slow aggregation pathways, although a greater proportion of protein G aggregation events are slow relative to those of found for protein L. These kinetic differences are correlated with the amount and distribution of intrachain contacts formed in the denatured state ensemble (DSE), or an intermediate state ensemble (ISE) if it exists, as well as the folding timescales of the two proteins. Protein G aggregates more slowly than protein L due to its rapidly formed folding intermediate, which exhibits native intrachain contacts spread across the protein, suggesting that certain early folding intermediates may be selected for by evolution due to their protective role against unwanted aggregation. Protein L shows only localized native structure in the DSE with timescales of folding that are commensurate with the aggregation timescale, leaving it vulnerable to domain swapping or nonnative interactions with other chains that increase the aggregation rate. Folding experiments that characterize the structural signatures of the DSE, ISE, or the transition state ensemble (TSE) under nonaggregating conditions should be able to predict regions where interchain contacts will be made in the aggregate, and to predict slower aggregation rates for proteins with contacts that are dispersed across the fold. Since proteins L and G can both form amyloid fibrils, this work also provides mechanistic and structural insight into the formation of prefibrillar species.  相似文献   
987.
Similar to the New World explorers of the 16th and 17th century, microbiologists today find themselves at the edge of unknown territory. It is estimated that only 0.1-1% of microorganisms can be cultivated using current techniques; the vastness of microbial lifestyles remains to be explored. Because the microbial metagenome is the largest reservoir of genes that determine enzymatic reactions, new techniques are being developed to identify the genes that underlie many valuable chemical biotransformations carried out by microbes, particularly in pathways for biodegradation of recalcitrant and xenobiotic molecules. Our knowledge of catabolic routes built on research during the past 40 years is a solid basis from which to venture on to the little-explored pathways that might exist in nature. However, it is clear that the vastness of information to be obtained requires astute experimental strategies for finding novel reactions.  相似文献   
988.
Effects of various cAMP analogues on gluconeogenesis in isolated rabbit kidney tubules have been investigated. In contrast to N(6),2'-O-dibutyryladenosine-3',5'-cyclic monophosphate (db-cAMP) and cAMP, which accelerate renal gluconeogenesis, 8-bromoadenosine-3',5'-cyclic monophosphate (Br-cAMP) and 8-(4-chlorophenylthio)-cAMP (pCPT-cAMP) inhibit glucose production. Stimulatory action of cAMP and db-cAMP may be evoked by butyrate and purinergic agonists generated during their extracellular and intracellular metabolism resulting in an increase in flux through fructose-1,6-bisphosphatase and in consequence acceleration of the rate of glucose formation. On the contrary, Br-cAMP is poorly metabolized in renal tubules and induces a fall of flux through glyceraldehyde-3-phosphate dehydrogenase. The contribution of putative extracellular cAMP receptors to the inhibitory Br-cAMP action is doubtful in view of a decline of glucose formation in renal tubules grown in the primary culture supplemented with forskolin. The presented data indicate that in contrast to hepatocytes, in kidney-cortex tubules an increased intracellular cAMP level results in an inhibition of glucose production.  相似文献   
989.
990.
Human immunodeficiency virus (HIV-1) has become an important risk factor for human papillomavirus (HPV) infection and the development of HPV associated lesions in the female genital tract. HIV-1 may also increase the oncogenicity of high risk HPV types and the activation of low risk types. The Center for Disease Control and Prevention declared invasive cervical cancer an acquired immunodeficiency virus (AIDS) defining illness in HIV positive women. Furthermore, cervical cancer happens to be the second most common female cancer worldwide. The host's local immune response plays a critical factor in controlling these conditions, as well as in changes in the number of professional antigen-presenting cells, cytokine, and MHC molecules expression. Also, the production of cytokines may determine which arm of the immune response will be stimulated and may influence the magnitude of immune protection. Although there are many studies describing the inflammatory response in HPV infection, few data are available to demonstrate the influence of the HIV infection and several questions regarding the cervical immune response are still unknown. In this review we present a brief account of the current understanding of HIV/HPV co-infection, emphasizing cervical immune response.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号