首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102320篇
  免费   7059篇
  国内免费   157篇
  109536篇
  2023年   667篇
  2022年   1019篇
  2021年   1940篇
  2020年   1480篇
  2019年   1801篇
  2018年   2886篇
  2017年   2605篇
  2016年   3470篇
  2015年   4554篇
  2014年   4870篇
  2013年   6382篇
  2012年   7415篇
  2011年   6875篇
  2010年   4532篇
  2009年   3874篇
  2008年   5371篇
  2007年   5123篇
  2006年   4825篇
  2005年   4114篇
  2004年   4064篇
  2003年   3672篇
  2002年   3342篇
  2001年   2446篇
  2000年   2344篇
  1999年   1902篇
  1998年   1027篇
  1997年   783篇
  1996年   755篇
  1995年   715篇
  1994年   583篇
  1993年   549篇
  1992年   1029篇
  1991年   928篇
  1990年   860篇
  1989年   829篇
  1988年   751篇
  1987年   721篇
  1986年   645篇
  1985年   632篇
  1984年   580篇
  1983年   460篇
  1982年   405篇
  1981年   320篇
  1980年   313篇
  1979年   411篇
  1978年   359篇
  1975年   346篇
  1974年   397篇
  1973年   387篇
  1972年   329篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Lycopersicon esculentum plants exhibit increased salt stress tolerance following treatment with adipic acid monoethylester and 1,3-diaminepropane (DAAME), known as an inducer of resistance against biotic stress in tomato and pepper. For an efficient water and nutrient uptake, plants should adapt their water potential to compensate a decrease in water soil potential produced by salt stress. DAAME-treated plants showed a faster and stronger water potential reduction and an enhanced proline accumulation. Salinity-induced oxidative stress was also ameliorated by DAAME treatments. Oxidative membrane damage and ethylene emission were both reduced in DAAME-treated plants. This effect is probably a consequence of an increase of both non-enzymatic antioxidant activity as well as peroxidase activity. DAAME-mediated tolerance resulted in an unaltered photosynthetic rate and a stimulation of the decrease in transpiration under stress conditions without a cost in growth due to salt stress. The reduction in transpiration rate was concomitant with a reduction in phytotoxic Na+ and Cl accumulation under saline stress. Interestingly, the ABA deficient tomato mutant sitiens was insensitive to DAAME-induced tolerance following NaCl stress exposure. Additionally, DAAME treatments increased the ABA content of leaves, therefore, an intact ABA signalling pathway seems to be important to express DAAME-induced salt tolerance. Here, we show a possibility of enhance tomato stress tolerance by chemical induction of the major plant defences against salt stress. DAAME-induced tolerance against salt stress could be complementary to or share elements with induced resistance against biotic stress. This might be the reason for the observed wide spectrum of effectiveness of this compound.Key Words: adipic acid monoethyl ester, 1,3-diaminepropane, Lycopersicon esculentum, salt stress, oxidative stress, ethylene, chemical induced tolerance  相似文献   
992.
Summary A purification procedure to obtain RNA polymerases I (or A) and II (or B) from Dictyostelium discoideum amoeba has been developed. The enzymes were solubilized from purified nuclei and separated by DEAF-Sephadex chromatography. RNA polymerases I and II were further purified by a second chromatography on DEAE-Sephadex followed by chromatographies on phosphocellulose and heparin-sepharose. The specific activities of purified RNA polymerases I and II are 92 units/ mg protein and 70 units/ mg protein, respectively. The subunit structure of both RNA polymerases were analyzed by polyacrylamide gel electrophoresis under denaturing conditions after glycerol gradient centrifugation of the enzymes. The putative subunits of RNA polymerase I have molecular weights of 180 000,125 000,43 000,40 000,34 000, 31 000, 25 000,19 000, 17 000 and 14 000. The putative subunits of RNA polymerase II have molecular weights of 200 000 (170 000), 130 000, 33 000, 25 000, 19 000, 17 000, 15 000, 13 000. There are three polypeptides with common molecular weight in Dictyostelium RNA polymerases I and 11. The subunit of 25 000 daltons of both enzymes has common immunological determinants with RNA polymerase II from crustacean Artemia.Abbreviations TLCK tosyl-lysine-chloromethyl-ketone - DPT diazophenylthioether  相似文献   
993.
Cryostat sections of various tissues of rat were stained using an indirect immunofluorescent method with monoclonal antibody against individual prekeratin with the molecular mass of 49 kilodalton (PK-49). Connective tissue endothelial cells, neurons, glia, haematopoetic tissue and smooth muscles were completely negative in this test. 46 morphological variants of epithelial structures were investigated. PK-49 was absent from all the stratified epithelia (epidermis, hair folliculi, oesophagus) but was expressed in virtually all simple epithelia of endodermal origin (exceptions: squamous lung alveolar epithelium and germinative epithelium of testis). There were negative (kidney tubules) as well as positive (bladder, mammary, glands) cell elements among mesodermal and ectodermal simple epithelia. High specificity of individual PK in respect to morphological variants of epithelia points out to the important role played by prekeratin-type intermediate filaments in morphogenesis.  相似文献   
994.
995.
The ability of Salmonella typhimurium to interact with host cells is largely dependent on the function of a type III protein-secretion system encoded at centisome 63 of its chromosome. We have shown here that two targets of this protein-secretion system, SipB and SipC, are translocated into cultured intestinal Henle-407 cells. Translocation required the function of the type III secretion apparatus, as an S. typhimurium strain carrying a mutation in invA , which encodes an essential component of this system, failed to translocate the Sip proteins. Null mutations in the genes encoding SipB, SipC or SipD, prevented protein translocation, indicating that these proteins are involved in the translocation process. In contrast, mutations in sipA and sptP , which also encode secreted proteins, did not interfere with the translocation of SipC, indicating that only a subset of targets of the type III secretion system act as translocases. Externally or internally localized bacteria could direct protein translocation into Henle-407 cells as this process occurred in the presence of cytochalasin D at a concentration that prevented bacterial entry, or in the presence of gentamicin added shortly after bacterial internalization at a concentration that killed extracellular Salmonella . These results indicate that protein translocation into host cells may be a universal function of all type III secretion systems.  相似文献   
996.
997.
The Alaskan tussock tundra is a strongly nutrient-limited ecosystem, where almost all vascular plant species are mycorrhizal. We established a long-term removal experiment to document effects of arctic plant species on ecto- and ericoid mycorrhizal fungi and to investigate whether species interactions and/or nutrient availability affect mycorrhizal colonization. The treatments applied were removal of Betula nana (Betulaceae, dominant deciduous shrub species), removal of Ledum palustre (Ericaceae, dominant evergreen shrub species), control (no removal), and each of these three treatments with the addition of fertilizer. After 3 years of Ledum removal and fertilization, we found that overall ectomycorrhizal colonization in Betula was significantly reduced. Changes in ectomycorrhizal morphotype composition in removal and fertilized treatments were also observed. These results suggest that the effect of Ledum on Betula 's mycorrhizal roots is due to sequestration of nutrients by Ledum, leading to reduced nutrient availability in the soil. In contrast, ericoid mycorrhizal colonization was not affected by fertilization, but the removal of Betula and to a lower degree of Ledum resulted in a reduction of ericoid mycorrhizal colonization suggesting a direct effect of these species on ericoid mycorrhizal colonization. Nutrient availability was only higher in fertilized treatments, but caution should be taken with the interpretation of these data as soil microbes may effectively compete with the ion exchange resins for the nutrients released by plant removal in these nutrient-limited soils.  相似文献   
998.
999.
The contribution of Ca2+ entry through different voltage-activated Ca2+ channel (VACC) subtypes to the phosphorylation of extracellular signal regulated kinase (ERK) was examined in bovine adrenal-medullary chromaffin cells. High K+ depolarization (40 mM, 3 min) induced ERK phosphorylation, an effect that was inhibited by specific mitogen-activated protein kinase kinase inhibitors. By using selective inhibitors, we observed that depolarization-induced ERK phosphorylation completely depended on protein kinase C-alpha (PKC-alpha), but not on Ca2+/calmodulin-dependent protein kinase nor cyclic AMP-dependent protein kinase. Blockade of L-type Ca2+ channels by 3 microm furnidipine, or blockade of N channels by 1 micromomega-conotoxin GVIA reduced ERK phosphorylation by 70%, while the inhibition of P/Q channels by 1 micromomega-agatoxin IVA only caused a 40% reduction. The simultaneous blockade of L and N, or P/Q and N channels completely abolished this response, yet 23% ERK phosphorylation remained when L and P/Q channels were simultaneously blocked. Confocal imaging of cytosolic Ca2+ elevations elicited by 40 mm K+, showed that Ca2+ levels increased throughout the entire cytosol, both in the presence and the absence of Ca2+ channel blockers. Fifty-eight percent of the fluorescence rise depended on Ca2+ entering through N channels. Thus, ERK phosphorylation seems to depend on a critical level of Ca2+ in the cytosol rather than on activation of a given Ca2+ channel subtype.  相似文献   
1000.
3'-Hydroxyacetaminophen, a catechol metabolite of N-acetyl-p-aminophenol (acetaminophen) and N-acetyl-m-aminophenol (a structural analogue of acetaminophen and considered as a possible alternative because it is not hepatotoxic), is enzymatically synthesized for the first time using mushroom tyrosinase. Although reported to be weakly hepatotoxic in vivo, this catechol derivative of acetaminophen is not commercially available. This compound was obtained from its monophenolic precursor, acetaminophen, using the enzyme tyrosinase in the presence of an excess of ascorbic acid, thus reducing back the o-quinone product of catalytic activity to the catechol acetaminophen derivative. A mathematical model of the system is proposed, which is also applicable to the tyrosinase-mediated synthesis of any o-diphenolic compound from its corresponding monophenol. This synthesis procedure is continuous, easy to perform and control, and adaptable to a bioreactor with the immobilized enzyme for industrial purposes in a nonpolluting way.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号