首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2663篇
  免费   235篇
  2898篇
  2023年   8篇
  2022年   28篇
  2021年   62篇
  2020年   30篇
  2019年   42篇
  2018年   69篇
  2017年   54篇
  2016年   89篇
  2015年   148篇
  2014年   149篇
  2013年   195篇
  2012年   258篇
  2011年   234篇
  2010年   169篇
  2009年   137篇
  2008年   194篇
  2007年   169篇
  2006年   164篇
  2005年   140篇
  2004年   122篇
  2003年   104篇
  2002年   105篇
  2001年   27篇
  2000年   19篇
  1999年   24篇
  1998年   27篇
  1997年   17篇
  1996年   13篇
  1995年   11篇
  1994年   10篇
  1993年   14篇
  1992年   7篇
  1991年   8篇
  1990年   6篇
  1989年   8篇
  1988年   8篇
  1987年   4篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   4篇
  1978年   1篇
  1976年   2篇
  1975年   2篇
  1971年   1篇
  1967年   1篇
  1966年   2篇
  1963年   1篇
  1956年   1篇
  1929年   1篇
排序方式: 共有2898条查询结果,搜索用时 17 毫秒
941.
Alditol oxidase (AldO) from Streptomyces coelicolor A3(2) is a soluble monomeric flavin-dependent oxidase that performs selective oxidation of the terminal primary hydroxyl group of several alditols. Here, we report the crystal structure of the recombinant enzyme in its native state and in complex with both six-carbon (mannitol and sorbitol) and five-carbon substrates (xylitol). AldO shares the same folding topology of the members of the vanillyl-alcohol oxidase family of flavoenzymes and exhibits a covalently linked FAD which is located at the bottom of a funnel-shaped pocket that forms the active site. The high resolution of the three-dimensional structures highlights a well-defined hydrogen-bonding network that tightly constrains the substrate in the productive conformation for catalysis. Substrate binding occurs through a lock-and-key mechanism and does not induce conformational changes with respect to the ligand-free protein. A network of charged residues is proposed to favor catalysis through stabilization of the deprotonated form of the substrate. A His side chain acts as back door that "pushes" the substrate-reactive carbon atom toward the N5-C4a locus of the flavin. Analysis of the three-dimensional structure reveals possible pathways for diffusion of molecular oxygen and a small cavity on the re side of the flavin that may host oxygen during FAD reoxidation. These features combined with the tight shape of the catalytic site provide insights into the mechanism of AldO-mediated regioselective oxidation reactions and its substrate specificity.  相似文献   
942.
Papilionate flowers, such as those of Robinia pseudoacacia L., show tripping mechanisms that prevent pollen release: only those bees which apply the right force on petals induce pollen to be deposited on their bodies. Apis mellifera is considered a poor visitor of such flowers, since individuals are usually too weak to trip the mechanism. Despite this, the honey bee pays frequent visits to flowers of R. pseudoacacia and produces a much appreciated unifloral honey. We investigated how bees manipulate R. pseudoacacia flowers, whether they contact the plant’s reproductive core and if there is any appreciable difference related to the manipulation of individual flowers. Honey bees showed two strategies for resource collection, namely legitimate visits and robberies. Legitimate visits were more frequent and about 63 % entailed contact with the flower’s reproductive core. We distinguished two behaviours, one to achieve successful positioning on the flower and the other for nectar intake. These behaviours were clearly perceptible and described by different curves of time frequency distribution. From the beginning to the end of anthesis, flowers were classified into four types on the basis of their morphological and phenological traits. Positioning time differed significantly depending on the flower type, with less time needed for more ageing flowers. Time spent in nectar intake was instead highly variable and independent of flower ageing. Selecting the right flower type would appear to lead to obtaining the R. pseudoacacia reward, overcoming species-specific physical inability. Moreover, the role of honey bees as pollinators of R. pseudoacacia is considered. Finally, the relations between petal characteristics and strength needed to trip the mechanism in papilionate flowers is also discussed in the light of nectar foragers.  相似文献   
943.
In the present study we utilized two previously described monoclonal antibodies (mAb), and their respective Fab portions, directed against the extracellular domain of p185HER2, a transmembrane glycoprotein with intrinsic tyrosine kinase activity coded by theHER2/neu oncogene, to study the mechanism of mAb-induced receptor internalization and phosphorylation. Fluorescence scan analysis and direct binding of radiolabelled mAb and their Fab fragments showed that entire MGR2 and MGR3 mAb were reactive with similar binding affinity on two cell lines (Calu-3 and Sk-Br-3) overexpressing the p185HER2 receptor, and unreactive on unrelated cells. The corresponding Fab fragments were positive on the related cells, but bound with diminished intensity and affinity. Entire MGR2 and MGR3 induced internalization in both Calu-3 and Sk-Br-3 cells, whereas their Fab portions were not internalized. When the bivalency of the MGR2 Fab fragment was artificially reconstituted by incubation with rabbit anti-(mouse IgG), internalization was obtained. Monovalent binding of the entire labelled antibodies, obtained in the presence of a saturating amount of unlabelled antibody, decreased both the rate and the final amount of internalized antibody. Metabolic labelling and immunoblotting experiments showed that incubation with entire MGR3 amplified the basal phosphorylation of the p185HER2 receptor in Calu-3 and Sk-Br-3 cells, whereas MGR3 Fab decreased the signal. Taken together, our data indicate that antibody-mediated activation of p185HER2 in Calu-3 and Sk-Br-3 cells occurs through the dimerization of receptor molecules and that bivalency of the activating antibody is mandatory for induction of internalization and phosphorylation of the receptor. Our data support an allosteric model of activation for the p185HER2 receptor.  相似文献   
944.
945.
The destruction of beta cells in type 1 diabetes (T1D) results in loss of insulin production and glucose homeostasis. Treatment of non-obese diabetic (NOD) mice with immune-depleting/modulating agents (e.g., anti-CD3, murine anti-thymocyte-globulin (mATG)) can lead to diabetes reversal. However, for preclinical studies with these and other agents seeking to reverse disease at onset, the necessity for exogenous insulin administration is debated. Spontaneously diabetic NOD mice were treated with a short-course of mATG and insulin provided as drug therapy or by way of allogeneic islet implants. Herein we demonstrate that exogenous insulin administration is required to achieve disease reversal with mATG in NOD mice. Unexpectedly, we also observed that provision of insulin by way of allogeneic islet implantation in combination with mATG leads to a pronounced reversal of diabetes as well as restoration of tolerance to self-islets. Expansion/induction of regulatory cells was observed in NOD mice stably cured with mATG and allogeneic islets. These data suggest that transient provision of allogeneic insulin-producing islets might provide a temporary window for immune depletion to be more effective and instilling stable tolerance to endogenous beta cells. These findings support the use of a never before explored approach for preserving beta cell function in patients with recent onset T1D.  相似文献   
946.
The heat induced aggregation of human serum albumin (HSA) with and without an equimolar amount of Cu(II) and Zn(II) was investigated by using optical absorption, fluorescence, AFM and EPR spectroscopy. Turbidity experiments as a function of temperature indicate that the protein aggregation occurs after the melting of the protein. The kinetic of HSA aggregation, investigated between 60 and 70 °C by monitoring the optical density changes at 400 nm on a 180 min time window, shows an exponential growth with a rate that increases with the temperature. Fluorescence of the thioflavin T evidences a significant increase of the intensity at 480 nm at increasing incubation time. These results combined with AFM experiments show that the protein aggregates are elongated oligomers with fibrillar-like features. The absence of a lag-phase suggests that the early stage aggregation of HSA follows a downhill pathway that does not require the formation of an organized nucleus. The presence of Cu(II) and Zn(II) ions does not affect the thermally induced aggregation process and the morphology of HSA aggregates. The result is compatible with the binding of the metal ions to the protein in the native state and with the high conformational stability of HSA.  相似文献   
947.
The methods currently utilized to track stem cells by cardiac MRI are affected by important limitations, and new solutions are needed. We tested human ferritin heavy chain (hFTH) as a reporter gene for in vivo tracking of stem cells by cardiac MRI. Swine cardiac stem/progenitor cells were transduced with a lentiviral vector to overexpress hFTH and cultured to obtain cardiospheres (Cs). Myocardial infarction was induced in rats, and, after 45 min, the animals were subjected to intramyocardial injection of ~200 hFTH-Cs or nontransduced Cs or saline solution in the border zone. By employing clinical standard 1.5-Tesla MRI scanner and a multiecho T2* gradient echo sequence, we localized iron-accumulating tissue only in hearts treated with hFTH-Cs. This signal was detectable at 1 wk after infarction, and its size did not change significantly after 4 wk (6.33 ± 3.05 vs. 4.41 ± 4.38 mm(2)). Cs transduction did not affect their cardioreparative potential, as indicated by the significantly better preserved left ventricular global and regional function and the 36% reduction in infarct size in both groups that received Cs compared with control infarcts. Prussian blue staining confirmed the presence of differentiated, iron-accumulating cells containing mitochondria of porcine origin. Cs-derived cells displayed CD31, α-smooth muscle, and α-sarcomeric actin antigens, indicating that the differentiation into endothelial, smooth muscle and cardiac muscle lineage was not affected by ferritin overexpression. In conclusion, hFTH can be used as a MRI reporter gene to track dividing/differentiating stem cells in the beating heart, while simultaneously monitoring cardiac morpho-functional changes.  相似文献   
948.
Plant ROP (Rho of plants) proteins form a unique subgroup within the family of Rho-type small G-proteins of eukaryotes. In this paper we demonstrate that the phosphomimetic mutation of a serine residue conserved in all Rho proteins affects the signaling properties of plant ROPs. We found that the S74E mutation in Medicago ROP6 and Arabidopsis ROP4 prevented the binding of these proteins to their plant-specific upstream activator the plant-specific ROP nucleotide exchanger (PRONE)-domain-containing RopGEF (guanine nucleotide exchange factor) protein and abolished the PRONE-mediated nucleotide exchange reaction in vitro. Structural modeling supported the hypothesis that potential phosphorylation of the S74 residue interferes with the binding of the PRONE-domain to the adjacent plant-specific R76 residue which plays an important role in functional ROP-PRONE interaction. Moreover, we show that while the binding of constitutively active MsROP6 to the effector protein RIC (ROP-interactive CRIB-motif-containing protein) was not affected by the S74E mutation, the capability of this mutated protein to bind and activate the RRK1 kinase in vitro was reduced. These observations are in agreement with the morphology of tobacco pollen tubes expressing mutant forms of yellow fluorescent protein (YFP):MsROP6. The S74E mutation in MsROP6 had no influence on pollen tube morphology and attenuated the phenotype of a constitutively active form of MsROP6. The presented Medicago and Arabidopsis data support the notion that the phosphorylation of the serine residue in ROPs corresponding to S74 in Medicago ROP6 could be a general principle for regulating ROP activation and signaling in plants.  相似文献   
949.
950.
In the past years, local field potential (LFP) signals recorded from the subthalamic nucleus (STN) in patients undergoing deep brain stimulation (DBS) for Parkinson's disease (PD) disclosed that DBS has a controversial effect on STN beta oscillations recorded 2-7 days after surgery for macroelectrode implantation. Nothing is known about these DBS-induced oscillatory changes 30 days after surgery. We recorded STN LFPs during ongoing DBS in 7 patients with PD, immediately (hyperacute phase) and 30 days (chronic phase) after surgery. STN LFP recordings showed stationary intranuclear STN beta LFP activity in hyperacute and chronic phases, confirming that beta peaks were also present in chronic recordings. Power spectra of nuclei with significant beta activity (54% of the sample) showed that it decreased significantly during DBS (p=0.021) under both recording conditions. The time course of beta activity showed more evident DBS-induced changes in the chronic than in the hyperacute phase (p=0.014). DBS-induced changes in STN beta LFPs in patients undergoing DBS in chronic phase provide useful information for developing a new neurosignal-controlled adaptive DBS system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号