首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2618篇
  免费   228篇
  2846篇
  2024年   1篇
  2023年   8篇
  2022年   28篇
  2021年   60篇
  2020年   30篇
  2019年   42篇
  2018年   70篇
  2017年   55篇
  2016年   85篇
  2015年   146篇
  2014年   150篇
  2013年   195篇
  2012年   254篇
  2011年   232篇
  2010年   169篇
  2009年   136篇
  2008年   191篇
  2007年   168篇
  2006年   162篇
  2005年   139篇
  2004年   122篇
  2003年   101篇
  2002年   97篇
  2001年   24篇
  2000年   16篇
  1999年   22篇
  1998年   26篇
  1997年   15篇
  1996年   11篇
  1995年   10篇
  1994年   10篇
  1993年   13篇
  1992年   8篇
  1991年   8篇
  1990年   6篇
  1989年   8篇
  1988年   6篇
  1987年   3篇
  1985年   2篇
  1984年   5篇
  1983年   1篇
  1982年   4篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1967年   1篇
  1966年   2篇
  1963年   1篇
排序方式: 共有2846条查询结果,搜索用时 15 毫秒
921.
922.
Mutations in the extracellular signal-regulated kinase (ERK) pathway, particularly in the mitogen-activated protein kinase/ERK kinase (MEK) activator B-Raf, are associated with human tumorigenesis and genetic disorders. Hence, B-Raf is a prime target for molecule-based therapies, and understanding its essential biological functions is crucial for their success. B-Raf is expressed preferentially in cells of neuronal origin. Here, we show that in mice, conditional ablation of B-Raf in neuronal precursors leads to severe dysmyelination, defective oligodendrocyte differentiation, and reduced ERK activation in brain. Both B-Raf ablation and chemical inhibition of MEK impair oligodendrocyte differentiation in vitro. In glial cell cultures, we find B-Raf in a complex with MEK, Raf-1, and kinase suppressor of Ras. In B-Raf-deficient cells, more Raf-1 is recruited to MEK, yet MEK/ERK phosphorylation is impaired. These data define B-Raf as the rate-limiting MEK/ERK activator in oligodendrocyte differentiation and myelination and have implications for the design and use of Raf inhibitors.  相似文献   
923.
924.
Alternative splicing is a widely used mechanism of gene regulation in sex determination pathways of Insects. In species from orders as distant as Diptera, Hymenoptera and Coleoptera, female differentiation relies on the activities of conserved splicing regulators, TRA and TRA-2, promoting female-specific expression of the global effector doublesex (dsx). Less understood is to what extent post-translational modifications of splicing regulators plays a role in this pathway. In Drosophila melanogaster phosphorylation of TRA, TRA-2 and the general RBP1 factor by the LAMMER kinase doa (darkener of apricot) is required for proper female sex determination. To explore whether this is a general feature of the pathway we examined sex-specific differences in phosphorylation levels of SR splicing factors in the dipteran species D. melanogaster, Ceratitis capitata (Medfly) and Musca domestica (Housefly). We found a distinct and reproducible pattern of male-specific phosphorylation on protein extracts enriched for SR proteins in C. capitata suggesting that differential phosphorylation may also contribute to the regulation of sex-specific splicing in the Medfly.  相似文献   
925.
ABSTRACT. Tetramitus thermacidophilus n. sp. is a novel thermophilic and acidophilic amoeboflagellate isolated from acidic hot springs in the Caldera Uzon (Kamchatka, Russia) and in Pisciarelli Solfatara (Naples, Italy). We describe it based on physiological, morphological, and sequence data. It was grown in monoxenic culture on the archaeon Acidianus brierleyi as food. Tetramitus thermacidophilus multiplies in a pH range from 1.2 to 5 and in a temperature range from 28 °C to 54 °C. The shortest doubling time was 4.5 h at pH 3 at 45 °C. Its spindle-shaped biflagellated stage was only rarely found in culture. The amoeboid stage shows the typical locomotive form of vahlkampfiid amoebae. Sequence comparisons of the internal transcribed spacer sequences and the small subunit rRNA genes confirm that T. thermacidophilus is a novel species within the genus Tetramitus and that both isolates belong to that species.  相似文献   
926.
Neurodegenerative diseases are often associated with misfolding and deposition of specific proteins in the nervous system. The prion protein, which is associated with transmissible spongiform encephalopathies (TSEs), is one of them. The normal function of the cellular form of the prion protein (PrPC) is mediated through specific signal transduction pathways and is linked to resistance to oxidative stress, neuronal outgrowth and cell survival. In TSEs, PrPC is converted into an abnormally folded isoform, called PrPSc, that may impair the normal function of the protein and/or generate toxic aggregates. To investigate these molecular events we performed a two-dimensional gel electrophoresis comparison of neuroblastoma N2a cells expressing different amounts of PrPC and eventually infected with the 22L prion strain. Mass spectrometry and peptide mass fingerprint analysis identified a series of proteins with modified expression. They included the chaperones Grp78/BiP, protein disulfide-isomerase A6, Grp75 and Hsp60 which had an opposite expression upon PrPC expression and PrPSc production. The detection of these proteins was coherent with the idea that protein misfolding plays an important role in TSEs. Other proteins, such as calreticulin, tubulin, vimentin or the laminin receptor had their expression modified in infected cells, which was reminiscent of previous results. Altogether our data provide molecular information linking PrP expression and misfolding, which could be the basis of further therapeutic and pathophysiological research in this field.Key words: chaperones, neuroblastoma, prion, proteomics  相似文献   
927.
Active regulation of protein abundance is an essential strategy to modulate cellular signaling pathways. Within the Wnt signaling cascade, regulated degradation of β‐catenin by the ubiquitin‐proteasome system (UPS) affects the outcome of canonical Wnt signaling. Here, we found that abundance of the Wnt cargo receptor Evi (Wls/GPR177), which is required for Wnt protein secretion, is also regulated by the UPS through endoplasmic reticulum (ER)‐associated degradation (ERAD). In the absence of Wnt ligands, Evi is ubiquitinated and targeted for ERAD in a VCP‐dependent manner. Ubiquitination of Evi involves the E2‐conjugating enzyme UBE2J2 and the E3‐ligase CGRRF1. Furthermore, we show that a triaging complex of Porcn and VCP determines whether Evi enters the secretory or the ERAD pathway. In this way, ERAD‐dependent control of Evi availability impacts the scale of Wnt protein secretion by adjusting the amount of Evi to meet the requirement of Wnt protein export. As Wnt and Evi protein levels are often dysregulated in cancer, targeting regulatory ERAD components might be a useful approach for therapeutic interventions.  相似文献   
928.
The research on complex I has gained recently a new enthusiasm, especially after the resolution of the crystallographic structures of bacterial and mitochondrial complexes. Most attention is now dedicated to the investigation of the energy coupling mechanism(s). The proton has been identified as the coupling ion, although in the case of some bacterial complexes I Na+ has been proposed to have that role. We have addressed the relation of some complexes I with Na+ and developed an innovative methodology using 23Na NMR spectroscopy. This allowed the investigation of Na+ transport taking the advantage of directly monitoring changes in Na+ concentration. Methodological aspects concerning the use of 23Na NMR spectroscopy to measure accurately sodium transport in bacterial membrane vesicles are discussed here. External-vesicle Na+ concentrations were determined by two different methods: 1) by integration of the resonance frequency peak and 2) using calibration curves of resonance frequency shift dependence on Na+ concentration. Although the calibration curves are a suitable way to determine Na+ concentration changes under conditions of fast exchange, it was shown not to be applicable to the bacterial membrane vesicle systems. In this case, the integration of the resonance frequency peak is the most appropriate analysis for the quantification of external-vesicle Na+ concentration. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   
929.
930.
A novel parental bla(TEM) gene (bla(TEM-1G)), encoding a TEM-1 beta-lactamase (pI of 5.4) produced by the uropathogenic Escherichia coli strain FMV194 was isolated from a dog. We report PCR-restriction fragment length polymorphism analysis and nucleotide sequencing of this gene. The bla(TEM-1G) sequence was identical to the bla(TEM-1C) gene framework in the coding and promoter (P3) regions, except for a silent G(604)-->T mutation in the coding region. Molecular phylogenetic analysis of parental bla(TEM) genes indicated two distinct groups, one comprising bla(TEM-1F) and bla(TEM-2). The other group comprises bla(TEM-1C) which is the probable ancestor of bla(TEM-1A), bla(TEM-1D) and bla(TEM-1G). The bla(TEM-1G) gene has the same framework as a gene encoding an inhibitor-resistant TEM beta-lactamase produced by an E. coli strain of human origin. Thus, parental bla(TEM) genes encoding beta-lactamases in E. coli strains isolated from different host species, in this case human and canine, may be phylogenetically very close.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号