首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2779篇
  免费   237篇
  3016篇
  2023年   8篇
  2022年   32篇
  2021年   63篇
  2020年   30篇
  2019年   45篇
  2018年   72篇
  2017年   55篇
  2016年   87篇
  2015年   147篇
  2014年   151篇
  2013年   199篇
  2012年   260篇
  2011年   238篇
  2010年   171篇
  2009年   143篇
  2008年   196篇
  2007年   177篇
  2006年   164篇
  2005年   147篇
  2004年   126篇
  2003年   109篇
  2002年   102篇
  2001年   32篇
  2000年   17篇
  1999年   24篇
  1998年   29篇
  1997年   19篇
  1996年   12篇
  1995年   13篇
  1994年   12篇
  1993年   17篇
  1992年   12篇
  1991年   14篇
  1990年   7篇
  1989年   12篇
  1988年   13篇
  1987年   8篇
  1985年   5篇
  1984年   4篇
  1983年   5篇
  1982年   7篇
  1981年   3篇
  1978年   4篇
  1977年   3篇
  1976年   3篇
  1974年   2篇
  1973年   3篇
  1972年   4篇
  1971年   2篇
  1966年   2篇
排序方式: 共有3016条查询结果,搜索用时 6 毫秒
41.
42.

Background

EPH (erythropoietin-producing hepatocellular) receptors are clinically relevant targets in several malignancies. This report describes the effects of GLPG1790, a new potent pan-EPH inhibitor, in human embryonal rhabdomyosarcoma (ERMS) cell lines.

Methods

EPH-A2 and Ephrin-A1 mRNA expression was quantified by real-time PCR in 14 ERMS tumour samples and in normal skeletal muscle (NSM). GLPG1790 effects were tested in RD and TE671 cell lines, two in vitro models of ERMS, by performing flow cytometry analysis, Western blotting and immunofluorescence experiments. RNA interfering experiments were performed to assess the role of specific EPH receptors. Radiations were delivered using an x-6 MV photon linear accelerator. GLPG1790 (30 mg/kg) in vivo activity alone or in combination with irradiation (2 Gy) was determined in murine xenografts.

Results

Our study showed, for the first time, a significant upregulation of EPH-A2 receptor and Ephrin-A1 ligand in ERMS primary biopsies in comparison to NSM. GLPG1790 in vitro induced G1-growth arrest as demonstrated by Rb, Cyclin A and Cyclin B1 decrease, as well as by p21 and p27 increment. GLPG1790 reduced migratory capacity and clonogenic potential of ERMS cells, prevented rhabdosphere formation and downregulated CD133, CXCR4 and Nanog stem cell markers. Drug treatment committed ERMS cells towards skeletal muscle differentiation by inducing a myogenic-like phenotype and increasing MYOD1, Myogenin and MyHC levels. Furthermore, GLPG1790 significantly radiosensitized ERMS cells by impairing the DNA double-strand break repair pathway. Silencing of both EPH-A2 and EPH-B2, two receptors preferentially targeted by GLPG1790, closely matched the effects of the EPH pharmacological inhibition. GLPG1790 and radiation combined treatments reduced tumour mass by 83% in mouse TE671 xenografts.

Conclusions

Taken together, our data suggest that altered EPH signalling plays a key role in ERMS development and that its pharmacological inhibition might represent a potential therapeutic strategy to impair stemness and to rescue myogenic program in ERMS cells.
  相似文献   
43.
A key series of vinblastine analogs 713, which contain modifications to the C20′ ethyl group, was prepared with use of two distinct synthetic approaches that provide modifications of the C20′ side chain containing linear and cyclized alkyl groups or added functionalized substituents. Their examination revealed the unique nature of the improved properties of the synthetic vinblastine 6, offers insights into the origins of its increased tubulin binding affinity and 10-fold improved cell growth inhibition potency, and served to probe a small hydrophobic pocket anchoring the binding of vinblastine with tubulin. Especially noteworthy were the trends observed with substitution of the terminal carbon of the ethyl group that, with the exception of 9 (R = F vs H, equipotent), led to remarkably substantial reductions in activity (>10-fold): R = F (equipotent with H) > N3, CN (10-fold) > Me (50-fold) > Et (100-fold) > OH (inactive). This is in sharp contrast to the maintained (7) or enhanced activity (6) observed with its incorporation into a cyclic C20′/C15′-fused six-membered ring.  相似文献   
44.

Background

Polyploidization is a major evolutionary process in plants where hybridization and chromosome doubling induce enormous genomic stress and can generate genetic and epigenetic modifications. However, proper evaluation of DNA sequence restructuring events and the precise characterization of sequences involved are still sparse.

Methodology/Principal Findings

Inter Retrotransposons Amplified Polymorphism (IRAP), Retrotransposons Microsatellite Amplified Polymorphism (REMAP) and Inter Simple Sequence Repeat (ISSR) largely confirmed the absence of any intraspecific variation in wheat, rye and triticale. The comparative analysis of banding profiles between wheat and rye inbred lines revealed 34% of monomorphic (common to both parental species) bands for the ten different primer combinations used. The analysis of triticale plants uncovered nearly 51% of rearranged bands in the polyploid, being the majority of these modifications, due to the loss of rye bands (83%). Sequence analysis of rye fragments absent in triticale revealed for instance homology with hydroxyproline-rich glycoproteins (HRGP), a protein that belongs to a major family of inducible defence response proteins. Conversely, a wheat-specific band absent in triticale comprises a nested structure of copia-like retrotransposons elements, namely Claudia and Barbara. Sequencing of a polyploid-specific band (absent in both parents) revealed a microsatellite related sequence. Cytological studies using Fluorescent In Situ Hybridization (FISH) with REMAP products revealed a widespread distribution of retrotransposon and/or microsatellite flanking sequences on rye chromosomes, with a preferential accumulation in heterochromatic sub-telomeric domains.

Conclusions/Significance

Here, we used PCR-based molecular marker techniques involving retrotransposons and microsatellites to uncover polyploidization induced genetic restructuring in triticale. Sequence analysis of rearranged genomic fragments either from rye or wheat origin showed these to be retrotransposon-related as well as coding sequences. Further FISH analysis revealed possible chromosome hotspots for sequence rearrangements. The role of chromatin condensation on the origin of genomic rearrangements mediated by polyploidization in triticale is also discussed.  相似文献   
45.
Community‐level climate change indicators have been proposed to appraise the impact of global warming on community composition. However, non‐climate factors may also critically influence species distribution and biological community assembly. The aim of this paper was to study how fire–vegetation dynamics can modify our ability to predict the impact of climate change on bird communities, as described through a widely‐used climate change indicator: the community thermal index (CTI). Potential changes in bird species assemblage were predicted using the spatially‐explicit species assemblage modelling framework – SESAM – that applies successive filters to constrained predictions of richness and composition obtained by stacking species distribution models that hierarchically integrate climate change and wildfire–vegetation dynamics. We forecasted future values of CTI between current conditions and 2050, across a wide range of fire–vegetation and climate change scenarios. Fire–vegetation dynamics were simulated for Catalonia (Mediterranean basin) using a process‐based model that reproduces the spatial interaction between wildfire, vegetation dynamics and wildfire management under two IPCC climate scenarios. Net increases in CTI caused by the concomitant impact of climate warming and an increasingly severe wildfire regime were predicted. However, the overall increase in the CTI could be partially counterbalanced by forest expansion via land abandonment and efficient wildfire suppression policies. CTI is thus strongly dependent on complex interactions between climate change and fire–vegetation dynamics. The potential impacts on bird communities may be underestimated if an overestimation of richness is predicted but not constrained. Our findings highlight the need to explicitly incorporate these interactions when using indicators to interpret and forecast climate change impact in dynamic ecosystems. In fire‐prone systems, wildfire management and land‐use policies can potentially offset or heighten the effects of climate change on biological communities, offering an opportunity to address the impact of global climate change proactively.  相似文献   
46.
According to life-history theory, the allocation of limiting resources to one trait has negative consequences for other traits requiring the same resource, resulting in trade-offs among life-history traits, such as reproduction and survival. In vertebrates, oxidative stress is increasingly being considered among the physiological mechanisms forming the currency of life-history trade-offs. In this study of the barn swallow (Hirundo rustica), we focus on the oxidative costs of reproduction, especially egg laying, by investigating the effects of breeding stage (pre- vs. post-laying) and progression of the season on three biomarkers of oxidative damage (OD) to plasma proteins, namely the concentration of malondialdehyde (MDA)-protein adducts and of protein thiol groups (PSH), and the protein carbonyl (PCO) content. Moreover, we investigated whether males and females differed in plasma OD levels, because the inherent sex differences in reproductive roles and physiology may originate sex-specific patterns of OD during breeding. We found that MDA-protein adduct levels were higher in the pre-laying than in the post-laying phase, that males had lower levels of MDA-modified proteins than females, and that the decline of MDA-protein adduct concentration between the pre- and the post-laying phase was more marked for females than males. In addition, MDA-protein adduct levels declined with sampling date, but only during the pre-laying phase. On the other hand, plasma PCO levels increased from the pre- to the post-laying phase in both sexes, and females had higher levels of PCO than males. PSH concentration was unaffected by breeding stage, sex or sampling date. On the whole, our findings indicate that biomarkers of protein oxidation closely track the short-term variation in breeding stage of both male and female barn swallows. Moreover, the higher protein OD levels observed among females compared to males suggest that egg laying entails oxidative costs, which might negatively affect female residual reproductive value.  相似文献   
47.

Introduction

Celiac disease (CD) may initially present as a neurological disorder or may be complicated by neurological changes. To date, neurophysiological studies aiming to an objective evaluation of the potential central nervous system involvement in CD are lacking.

Objective

To assess the profile of cortical excitability to Transcranial Magnetic Stimulation (TMS) in a group of de novo CD patients.

Materials and methods

Twenty CD patients underwent a screening for cognitive and neuropsychiatric symptoms by means of the Mini Mental State Examination and the Structured Clinical Interview for DSM-IV Axis I Disorders, respectively. Instrumental exams, including electroencephalography and brain computed tomography, were also performed. Cortico-spinal excitability was assessed by means of single and paired-pulse TMS using the first dorsal interosseus muscle of the dominant hand. TMS measures consisted of resting motor threshold, motor evoked potentials, cortical silent period (CSP), intracortical inhibition (ICI) and facilitation (ICF). None of the CD was on gluten-free diet. A group of 20 age-matched healthy controls was used for comparisons.

Results

CD showed a significantly shorter CSP (78.0 vs 125.0 ms, p<0.025), a reduced ICI (0.3 vs 0.2, p<0.045) and an enhanced ICF (1.1 vs 0.7, p<0.042) compared to controls. A dysthymic disorder was identified in five patients. The effect size between dysthymic and non-dysthymic CD patients indicated a low probability of interference with the CSP (Cohen''s d -0.414), ICI (-0.278) and ICF (-0.292) measurements.

Conclusion

A pattern of cortical excitability characterized by “disinhibition” and “hyperfacilitation” was found in CD patients. Immune system dysregulation might play a central role in triggering changes of the motor cortex excitability.  相似文献   
48.
Rist MJ  Marino JP 《Biochemistry》2002,41(50):14762-14770
Dimerization of two homologous strands of genomic RNA is an essential feature of retroviral replication. In the human immunodeficiency virus type 1 (HIV-1), a conserved stem-loop sequence, the dimerization initiation site (DIS), has been identified as the domain primarily responsible for initiation of this aspect of viral assembly. The DIS loop contains an autocomplementary hexanucleotide sequence flanked by highly conserved 5' and 3' purines and can form a homodimer through a loop-loop kissing interaction. In a structural rearrangement activated by the HIV-1 nucleocapsid protein (NCp7) and considered to be associated with viral particle maturation, the DIS dimer converts from an intermediate kissing to an extended duplex isoform. Using 2-aminopurine (2-AP) labeled sequences derived from the DIS(Mal) variant and fluorescence methods, the two DIS dimer isoforms have been unambiguously distinguished, allowing a detailed examination of the kinetics of this RNA structural isomerization and a characterization of the role of NCp7 in the reaction. In the presence of divalent cations, the DIS kissing dimer is found to be kinetically trapped and converts to the extended duplex isoform only upon addition of NCp7. NCp7 is demonstrated to act catalytically in inducing the structural isomerization by accelerating the rate of strand exchange between the two hairpin stem helices, without disruption of the loop-loop helix. Observation of an apparent maximum conversion rate for NCp7-activated DIS isomerization, however, requires protein concentrations in excess of the 2:1 stoichiometry estimated for high-affinity NCp7 binding to the DIS kissing dimer, indicating that transient interactions with additional NCp7(s) may be required for catalysis.  相似文献   
49.

Background  

Transposable elements (TEs) represent more than 45% of the human and mouse genomes. Both parasitic and mutualistic features have been shown to apply to the host-TE relationship but a comprehensive scenario of the forces driving TE fixation within mammalian genes is still missing.  相似文献   
50.
Nitric oxide is an important mediator that participates in reduction-oxidation (redox) mechanisms and in cellular signal transduction pathways. Two types of post-translational modifications are induced by nitric oxide: S-nitrosylation of cysteine residues and nitration of tyrosine residues. Two-dimensional gel electrophoresis-based Western blotting was used to detect, and liquid chromatography (LC)-tandem mass spectrometry (MS/MS) to determine the amino acid sequence of, several different nitrated proteins in the human pituitary. Proteins from several 2D gel spots, which corresponded to the strongly positive anti-nitrotyrosine Western blot spots, were subjected to in-gel trypsin-digestion and LC-MS/MS analysis. MS/MS, SEQUEST analysis, and de novo sequencing were used to determine the nitration site of each nitrated peptide. A total of four different nitrated peptides were characterized and were matched to four different proteins: synaptosomal-associated protein, actin, immunoglobulin alpha Fc receptor, and cGMP-dependent protein kinase 2. Those nitrotyrosyl-proteins participate in neurotransmission, cellular immunity, and cellular structure and mobility.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号