首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3229篇
  免费   289篇
  2023年   6篇
  2022年   29篇
  2021年   68篇
  2020年   34篇
  2019年   51篇
  2018年   85篇
  2017年   69篇
  2016年   100篇
  2015年   167篇
  2014年   182篇
  2013年   236篇
  2012年   293篇
  2011年   275篇
  2010年   199篇
  2009年   154篇
  2008年   231篇
  2007年   194篇
  2006年   190篇
  2005年   163篇
  2004年   142篇
  2003年   124篇
  2002年   119篇
  2001年   43篇
  2000年   33篇
  1999年   37篇
  1998年   34篇
  1997年   23篇
  1996年   20篇
  1995年   15篇
  1994年   13篇
  1993年   17篇
  1992年   17篇
  1991年   12篇
  1990年   15篇
  1989年   14篇
  1988年   8篇
  1987年   6篇
  1986年   11篇
  1984年   12篇
  1983年   4篇
  1982年   6篇
  1978年   5篇
  1974年   4篇
  1973年   4篇
  1971年   3篇
  1969年   3篇
  1968年   4篇
  1966年   3篇
  1939年   6篇
  1938年   11篇
排序方式: 共有3518条查询结果,搜索用时 250 毫秒
111.
112.
Plants are protected from pathogens not only by their own immunity but often also by colonizing commensal microbes. In Arabidopsis thaliana, a group of cryptically pathogenic Pseudomonas strains often dominates local populations. This group coexists in nature with commensal Pseudomonas strains that can blunt the deleterious effects of the pathogens in the laboratory. We have investigated the interaction between one of the Pseudomonas pathogens and 99 naturally co-occurring commensals, finding plant protection to be common among non-pathogenic Pseudomonas. While protective ability is enriched in one specific lineage, there is also a substantial variation for this trait among isolates of this lineage. These functional differences do not align with core-genome phylogenies, suggesting repeated gene inactivation or loss as causal. Using genome-wide association, we discovered that different bacterial genes are linked to plant protection in each lineage. We validated a protective role of several lineage-specific genes by gene inactivation, highlighting iron acquisition and biofilm formation as prominent mechanisms of plant protection in this Pseudomonas lineage. Collectively, our work illustrates the importance of functional redundancy in plant protective traits across an important group of commensal bacteria.Subject terms: Microbial ecology, Plant ecology  相似文献   
113.
In L6 skeletal muscle cells and immortalized hepatocytes, insulin induced a 2-fold increase in the activity of the pyruvate dehydrogenase (PDH) complex. This effect was almost completely blocked by the protein kinase C (PKC) delta inhibitor Rottlerin and by PKCdelta antisense oligonucleotides. At variance, overexpression of wild-type PKCdelta or of an active PKCdelta mutant induced PDH complex activity in both L6 and liver cells. Insulin stimulation of the activity of the PDH complex was accompanied by a 2.5-fold increase in PDH phosphatases 1 and 2 (PDP1/2) activity with no change in the activity of PDH kinase. PKCdelta antisense blocked insulin activation of PDP1/2, the same as with PDH. In insulin-exposed cells, PDP1/2 activation was paralleled by activation and mitochondrial translocation of PKCdelta, as revealed by cell subfractionation and confocal microscopy studies. The mitochondrial translocation of PKCdelta, like its activation, was prevented by Rottlerin. In extracts from insulin-stimulated cells, PKCdelta co-precipitated with PDP1/2. PKCdelta also bound to PDP1/2 in overlay blots, suggesting that direct PKCdelta-PDP interaction may occur in vivo as well. In intact cells, insulin exposure determined PDP1/2 phosphorylation, which was specifically prevented by PKCdelta antisense. PKCdelta also phosphorylated PDP in vitro, followed by PDP1/2 activation. Thus, in muscle and liver cells, insulin causes activation and mitochondrial translocation of PKCdelta, accompanied by PDP phosphorylation and activation. These events are necessary for insulin activation of the PDH complex in these cells.  相似文献   
114.
The trisomy 16 (Ts16) mouse is an animal model for human trisomy 21 (Down's syndrome). The gene encoding the NR2A subunit of the NMDA receptor has been localized to mouse chromosome 16. In the present study, western blot analysis revealed a 2.5-fold increase of NR2A expression in cultured Ts16 embryonic hippocampal neurons. However, this increase did not affect the properties of NMDA-evoked currents in response to various modulators. The sensitivity of NMDA receptors to transient applications of NMDA, spermine, and Zn(2+) was investigated in murine Ts16 and control diploid cultured embryonic hippocampal neurons. Peak and steady-state currents evoked by NMDA were potentiated by spermine at concentrations < 1 mM, and inhibited by Zn(2+) in a dose-dependent and voltage-independent manner. No marked difference was observed between Ts16 and control diploid neurons for any of these modulators with regard to IC(50) and EC(50) values or voltage dependency. Additionally, inhibition by the NR2B selective inhibitor, ifenprodil, was similar. These results demonstrate that NMDA-evoked currents are not altered in cultured embryonic Ts16 neurons and suggest that Ts16 neurons contain similar functional properties of NMDA receptors as diploid control neurons despite an increased level of NR2A expression.  相似文献   
115.
The antiinflammatory effect of ADM was studied in different models of inflammation and compared to the one of CGRP. Peptides were active against acetic acid-induced peritonitis in the rats. ADM and CGRP exerted the antiinflammatory effect at different doses, 400 and 20 ng/kg respectively, but with different efficacy (ADM >CGRP). This effect was blocked by pretreatment with CGRP (8-37) fragment or with L-NAME. No antiinflammatory activity was evidenced against serotonin- or carrageenin-induced rat paw edema. Our data suggest that ADM exerts antiinflammatory activity in the model characterized by a vascular component. This effect involves CGRP receptors and appears to be mediated by nitric oxide system.  相似文献   
116.
Metabolic engineering of the early non-mevalonate terpenoid pathway of Escherichia coli was carried out to increase the supply of prenyl pyrophosphates as precursor for carotenoid production. Transformation with the genes dxs for over-expression of 1-deoxy-d-xylulose 5-phosphate synthase, dxr for 1-deoxy-d-xylulose 5-phosphate reductoisomerase and idi encoding an isopentenyl pyrophosphate stimulated carotenogenesis up to 3.5-fold. Co-transformation of idi with either dxs or dxr had an additive effect on ß-carotene and zeaxanthin production which reached 1.6 mg g–1 dry wt.  相似文献   
117.
118.
119.
A major goal of phytoremediation is to transform fast-growing plants with genes from plant species that hyperaccumulate toxic trace elements. We overexpressed the gene encoding selenocysteine methyltransferase (SMT) from the selenium (Se) hyperaccumulator Astragalus bisulcatus in Arabidopsis and Indian mustard (Brassica juncea). SMT detoxifies selenocysteine by methylating it to methylselenocysteine, a nonprotein amino acid, thereby diminishing the toxic misincorporation of Se into protein. Our Indian mustard transgenic plants accumulated more Se in the form of methylselenocysteine than the wild type. SMT transgenic seedlings tolerated Se, particularly selenite, significantly better than the wild type, producing 3- to 7-fold greater biomass and 3-fold longer root lengths. Moreover, SMT plants had significantly increased Se accumulation and volatilization. This is the first study, to our knowledge, in which a fast-growing plant was genetically engineered to overexpress a gene from a hyperaccumulator in order to increase phytoremediation potential.  相似文献   
120.
Thermophiles are organisms that grow optimally above 50 degrees C and up to approximately 120 degrees C. These extreme conditions must have led to specific characteristics of the cellular components. In this paper we extensively analyze the types of respiratory complexes from thermophilic aerobic prokaryotes. The different membrane-bound complexes so far characterized are described, and the genomic data available for thermophilic archaea and bacteria are analyzed. It is observed that no specific characteristics can be associated to thermophilicity as the different types of complexes I-IV are present randomly in thermophilic aerobic organisms, as well as in mesophiles. Rather, the extensive genomic analyses indicate that the differences concerning the several complexes are related to the organism phylogeny, i.e., to evolution and lateral gene transfer events.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号