首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2709篇
  免费   238篇
  2023年   5篇
  2022年   30篇
  2021年   61篇
  2020年   31篇
  2019年   42篇
  2018年   69篇
  2017年   55篇
  2016年   86篇
  2015年   147篇
  2014年   150篇
  2013年   197篇
  2012年   259篇
  2011年   236篇
  2010年   170篇
  2009年   137篇
  2008年   192篇
  2007年   172篇
  2006年   162篇
  2005年   142篇
  2004年   123篇
  2003年   106篇
  2002年   103篇
  2001年   27篇
  2000年   16篇
  1999年   22篇
  1998年   29篇
  1997年   15篇
  1996年   13篇
  1995年   10篇
  1994年   12篇
  1993年   16篇
  1992年   8篇
  1991年   8篇
  1990年   10篇
  1989年   9篇
  1988年   9篇
  1987年   4篇
  1986年   2篇
  1985年   4篇
  1984年   7篇
  1982年   5篇
  1979年   3篇
  1978年   3篇
  1977年   12篇
  1976年   6篇
  1975年   7篇
  1973年   3篇
  1966年   2篇
  1959年   1篇
  1921年   1篇
排序方式: 共有2947条查询结果,搜索用时 15 毫秒
71.
Borna disease virus (BDV) is a non‐segmented negative‐stranded RNA virus that maintains a strictly neurotropic and persistent infection in affected end hosts. The primary target cells for BDV infection are brain cells, e.g. neurons and astrocytes. The exact mechanism of how infection is propagated between these cells and especially the role of the viral glycoprotein (GP) for cell–cell transmission, however, are still incompletely understood. Here, we use different cell culture systems, including rat primary astrocytes and mixed cultures of rat brain cells, to show that BDV primarily spreads through cell–cell contacts. We employ a highly stable and efficient peptidomimetic inhibitor to inhibit the furin‐mediated processing of GP and demonstrate that cleaved and fusion‐active GP is strictly necessary for the cell‐to‐cell spread of BDV. Together, our quantitative observations clarify the role of Borna disease virus‐glycoprotein for viral dissemination and highlight the regulation of GP expression as a potential mechanism to limit viral spread and maintain persistence. These findings furthermore indicate that targeting host cell proteases might be a promising approach to inhibit viral GP activation and spread of infection.  相似文献   
72.
The first genetic variant of β2‐microglobulin (b2M) associated with a familial form of systemic amyloidosis has been recently described. The mutated protein, carrying a substitution of Asp at position 76 with an Asn (D76N b2M), exhibits a strongly enhanced amyloidogenic tendency to aggregate with respect to the wild‐type protein. In this study, we characterized the D76N b2M aggregation path and performed an unprecedented analysis of the biochemical mechanisms underlying aggregate cytotoxicity. We showed that, contrarily to what expected from other amyloid studies, early aggregates of the mutant are not the most toxic species, despite their higher surface hydrophobicity. By modulating ganglioside GM1 content in cell membrane or synthetic lipid bilayers, we confirmed the pivotal role of this lipid as aggregate recruiter favouring their cytotoxicity. We finally observed that the aggregates bind to the cell membrane inducing an alteration of its elasticity (with possible functional unbalance and cytotoxicity) in GM1‐enriched domains only, thus establishing a link between aggregate‐membrane contact and cell damage.  相似文献   
73.
74.
75.
76.
Metastatic uveal melanoma (UM) responds poorly to targeted therapies and immune checkpoint inhibitors. Loss of BRCA1-associated protein 1 (BAP1) via inactivating mutations in the BAP1 gene is associated with UM progression. Thus, molecular alterations caused by BAP1 dysfunction may be novel therapeutic targets for metastatic UM. Here, we found that phosphorylation of AMP-dependent kinase (AMPK) was elevated in BAP1-altered (or mutant) compared to BAP1-unaltered (or wild-type [WT]) UM tumors. As a readout of AMPK pathway activation, phosphorylation of an AMPK downstream effector, acetyl-CoA-carboxylase (ACC), was also elevated. BAP1 re-expression in BAP1-null UM cell lines decreased phospho-AMPK (pAMPK) and phospho-ACC (pACC) levels. AMPK phosphorylation is mediated by calcium/calmodulin dependent protein kinase kinase 2 (CaMKK2) and potentially liver kinase B1 (LKB1) in BAP1 mutant UM cells. Knockdown of AMPKα1/2 reduced the viability of BAP1 mutant UM cells, indicating a survival function of AMPK in BAP1 mutant UM. Our data suggest that the AMPK pathway is an important mechanism mediating the survival of BAP1 mutant UM. Targeting the AMPK pathway may be a novel therapeutic strategy for metastatic UM.  相似文献   
77.
78.
The hepatitis C virus encodes a single polyprotein that is processed by host and viral proteases to yield at least 10 mature viral proteins. The nonstructural (NS) protein 5A is a phosphoprotein, and experimental data indicate that the phosphorylation state of NS5A is important for the outcome of viral RNA replication. We were able to identify kinase inhibitors that specifically inhibit the formation of the hyperphosphorylated form of NS5A (p58) in cells. These kinase inhibitors were used for inhibitor affinity chromatography in order to identify the cellular targets of these compounds. The kinases casein kinase I (CKI), p38 MAPK, CIT (Citron Rho-interacting kinase), GAK, JNK2, PKA, RSK1/2, and RIPK2 were identified in the high affinity binding fractions of two NS5A hyperphosphorylation inhibitors (NS5A-p58-i). Even though these kinases are targets of the NS5A-p58-i, the only kinase showing an effect on NS5A hyperphosphorylation was confirmed to be CKI-alpha. Although this finding does not exclude the possibility that other kinase(s) might be involved in basal or regulatory phosphorylation of NS5A, we show here that NS5A is a direct substrate of CKI-alpha. Moreover, in vitro phosphorylation of NS5A by CKI-alpha resulted for the first time in the production of basal and hyperphosphorylated forms resembling those produced in cells. In vitro kinase reactions performed with NS5A peptides show that Ser-2204 is a preferred substrate residue for CKI-alpha after pre-phosphorylation of Ser-2201.  相似文献   
79.
The loss of intestinal epithelial cell (IEC) function is a critical component in the initiation and perpetuation of chronic intestinal inflammation in the genetically susceptible host. We applied proteome analysis (PA) to characterize changes in the protein expression profile of primary IEC from patients with Crohn's disease (CD) and ulcerative colitis (UC). Surgical specimens from 18 patients with active CD (N = 6), UC (N = 6), and colonic cancer (N = 6) were used to purify primary IEC from ileal and colonic tissues. Changes in protein expression were identified using 2D-gel electrophoreses (2D SDS-PAGE) and peptide mass fingerprinting via MALDI-TOF mass spectrometry (MS) as well as Western blot analysis. PA of primary IEC from inflamed ileal tissue of CD patients and colonic tissue of UC patients identified 21 protein spots with at least 2-fold changes in steady-state expression levels compared to the noninflamed tissue of control patients. Statistical significance was achieved for 9 proteins including the Rho-GDP dissociation inhibitor alpha that was up-regulated in CD and UC patients. Additionally, 40 proteins with significantly altered expression levels were identified in IEC from inflamed compared to noninflamed tissue regions of single UC (N = 2) patients. The most significant change was detected for programmed cell death protein 8 (7.4-fold increase) and annexin 2A (7.7-fold increase). PA in primary IEC from IBD patients revealed significant expression changes of proteins that are associated with signal transduction, stress response as well as energy metabolism. The induction of Rho GDI alpha expression may be associated with the destruction of IEC homeostasis under condition of chronic intestinal inflammation.  相似文献   
80.
Asexuals are an important test case for theories of why species exist. If asexual clades displayed the same pattern of discrete variation as sexual clades, this would challenge the traditional view that sex is necessary for diversification into species. However, critical evidence has been lacking: all putative examples have involved organisms with recent or ongoing histories of recombination and have relied on visual interpretation of patterns of genetic and phenotypic variation rather than on formal tests of alternative evolutionary scenarios. Here we show that a classic asexual clade, the bdelloid rotifers, has diversified into distinct evolutionary species. Intensive sampling of the genus Rotaria reveals the presence of well-separated genetic clusters indicative of independent evolution. Moreover, combined genetic and morphological analyses reveal divergent selection in feeding morphology, indicative of niche divergence. Some of the morphologically coherent groups experiencing divergent selection contain several genetic clusters, in common with findings of cryptic species in sexual organisms. Our results show that the main causes of speciation in sexual organisms, population isolation and divergent selection, have the same qualitative effects in an asexual clade. The study also demonstrates how combined molecular and morphological analyses can shed new light on the evolutionary nature of species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号