首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3007篇
  免费   260篇
  2023年   5篇
  2022年   25篇
  2021年   65篇
  2020年   33篇
  2019年   50篇
  2018年   79篇
  2017年   62篇
  2016年   93篇
  2015年   160篇
  2014年   170篇
  2013年   227篇
  2012年   287篇
  2011年   253篇
  2010年   183篇
  2009年   149篇
  2008年   212篇
  2007年   180篇
  2006年   177篇
  2005年   150篇
  2004年   136篇
  2003年   110篇
  2002年   108篇
  2001年   31篇
  2000年   24篇
  1999年   32篇
  1998年   34篇
  1997年   19篇
  1996年   16篇
  1995年   16篇
  1994年   15篇
  1993年   15篇
  1992年   13篇
  1991年   8篇
  1990年   8篇
  1989年   11篇
  1988年   8篇
  1987年   7篇
  1986年   7篇
  1985年   9篇
  1984年   9篇
  1983年   9篇
  1982年   4篇
  1975年   3篇
  1971年   3篇
  1970年   4篇
  1969年   7篇
  1968年   8篇
  1967年   6篇
  1966年   6篇
  1965年   4篇
排序方式: 共有3267条查询结果,搜索用时 250 毫秒
151.
The synthesis of 2-(5,6,7,8-tetrahydro[1]benzothieno[2,3-d]pyrimidin-4-yl)hydrazone-derivatives (BTPs) and their in vitro evaluation against Trypanosoma cruzi trypomastigotes, Mycobacterium tuberculosis, Leishmania amazonensis axenic amastigotes, and six human cancer cell lines is described. The in vivo activity of the most active and least toxic compounds against T. cruzi and L. amazonensis was also studied. BTPs constitute a new family of drug leads with potential activity against infectious diseases. Due to their drug-like properties, this series of compounds can potentially serve as templates for future drug-optimization and drug-development efforts for use as therapeutic agents in developing countries.  相似文献   
152.
Two series of novel rigid pyrazolone derivatives were synthesized and evaluated as inhibitors of Mycobacterium tuberculosis (MTB), the causative agent of tuberculosis. Two of these compounds showed a high activity against MTB (MIC = 4 μg/mL). The newly synthesized pyrazolones were also computationally investigated to analyze if their properties fit the pharmacophoric model for antitubercular compounds previously built by us. The results are in agreement with those reported by us previously for a class of pyrazole analogues and confirm the fundamental role of the p-chlorophenyl moiety at C4 in the antimycobacterial activity.  相似文献   
153.
154.
155.
156.
The design and performance of solar cells based on InP grown by the nonepitaxial thin‐film vapor–liquid–solid (TF‐VLS) growth technique is investigated. The cell structure consists of a Mo back contact, p‐InP absorber layer, n‐TiO2 electron selective contact, and indium tin oxide transparent top electrode. An ex situ p‐doping process for TF‐VLS grown InP is introduced. Properties of the cells such as optoelectronic uniformity and electrical behavior of grain boundaries are examined. The power conversion efficiency of first generation cells reaches 12.1% under simulated 1 sun illumination with open‐circuit voltage (VOC) of 692 mV, short‐circuit current (JSC) of 26.9 mA cm?2, and fill factor (FF) of 65%. The FF of the cell is limited by the series resistances in the device, including the top contact, which can be mitigated in the future through device optimization. The highest measured VOC under 1 sun is 692 mV, which approaches the optically implied VOC of ≈795 mV extracted from the luminescence yield of p‐InP.  相似文献   
157.
Range shifts (especially during the Pleistocene), polyploidisation and hybridization are major factors affecting high-mountain biodiversity. A good system to study their role in the European high mountains is the Doronicum clusii aggregate (Asteraceae), whose four taxa (D. clusii s.s., D. stiriacum, D. glaciale subsp. glaciale and D. glaciale subsp. calcareum) are differentiated geographically, ecologically (basiphilous versus silicicolous) and/or via their ploidy levels (diploid versus tetraploid). Here, we use DNA sequences (three plastid and one nuclear spacer) and AFLP fingerprinting data generated for 58 populations to infer phylogenetic relationships, origin of polyploids—whose ploidy level was confirmed by chromosomally calibrated DNA ploidy level estimates—and phylogeographic history. Taxonomic conclusions were informed, among others, by a Gaussian clustering method for species delimitation using dominant multilocus data. Based on molecular data we identified three lineages: (i) silicicolous diploid D. clusii s.s. in the Alps, (ii) silicicolous tetraploid D. stiriacum in the eastern Alps (outside the range of D. clusii s.s.) and the Carpathians and (iii) the basiphilous diploids D. glaciale subsp. glaciale (eastern Alps) and D. glaciale subsp. calcareum (northeastern Alps); each taxon was identified as distinct by the Gaussian clustering, but the separation of D. glaciale subsp. calcareum and D. glaciale subsp. glaciale was not stable, supporting their taxonomic treatment as subspecies. Carpathian and Alpine populations of D. stiriacum were genetically differentiated suggesting phases of vicariance, probably during the Pleistocene. The origin (autopolyploid versus allopolyploid) of D. stiriacum remained unclear. Doronicum glaciale subsp. calcareum was genetically and morphologically weakly separated from D. glaciale subsp. glaciale but exhibited significantly higher genetic diversity and rarity. This suggests that the more widespread D. glaciale subsp. glaciale originated from D. glaciale subsp. calcareum, which is restricted to a prominent Pleistocene refugium previously identified in other alpine plant species.  相似文献   
158.
159.
160.
Bacterial lipoproteins are attractive vaccine candidates because they represent a major class of cell surface-exposed proteins in many bacteria and are considered as potential pathogen-associated molecular patterns sensed by Toll-like receptors with built-in adjuvanticity. Although Gram-negative lipoproteins have been extensively characterized, little is known about Gram-positive lipoproteins. We isolated from Streptococcus pyogenes a large amount of lipoproteins organized in vesicles. These vesicles were obtained by weakening the bacterial cell wall with a sublethal concentration of penicillin. Lipid and proteomic analysis of the vesicles revealed that they were enriched in phosphatidylglycerol and almost exclusively composed of lipoproteins. In association with lipoproteins, a few hypothetical proteins, penicillin-binding proteins, and several members of the ExPortal, a membrane microdomain responsible for the maturation of secreted proteins, were identified. The typical lipidic moiety was apparently not necessary for lipoprotein insertion in the vesicle bilayer because they were also recovered from the isogenic diacylglyceryl transferase deletion mutant. The vesicles were not able to activate specific Toll-like receptor 2, indicating that lipoproteins organized in these vesicular structures do not act as pathogen-associated molecular patterns. In light of these findings, we propose to name these new structures Lipoprotein-rich Membrane Vesicles.Bacterial lipoproteins (Lpps)1 are a subset of membrane proteins that are covalently modified with a lipidic moiety at their N-terminal cysteine residue. It is commonly reported that Lpps of Gram-positive bacteria are processed by two key enzymes; the prolipoprotein diacylglyceryl transferase (Lgt) and the lipoprotein signal peptidase (Lsp). The Lgt enzyme recognizes a so-called lipobox motif in the C-terminal region of the signal peptide of a premature lipoprotein and transfers a diacylglyceryl moiety to the cysteine residue of the lipobox (1), (2). Subsequently, the Lsp enzyme cleaves the signal peptide resulting in a mature Lpp (3), (4). Nevertheless, recent reports have suggested that N-acylation occurs in bacteria that lack the Gram-negative homologous apolipoprotein N-acyltransferase (Lnt) gene responsible for this modification (5, 6), and that Lpp N-terminal could also be modified with an acetyl group in some Gram-positive (7).Lpps have been described as virulence factors because they play critical roles in membrane stabilization, nutrient uptake, antibiotic resistance, bacterial adhesion to host cells, protein maturation and secretion and many of them still have unknown function (8). Several studies have suggested that bacterial Lpps are pathogen-associated molecular patterns (PAMPs) sensed by the mammalian host through Toll-like receptor 2 (TLR2) heterodimerized with TLR1 or TLR6 to induce innate immunity activation and to control adaptive immunity (912). TLR2 plays a critical role in the host response to the Gram-positive bacteria Staphylococcus aureus (13) and Streptococcus agalactiae (14). Although TLR2 has been considered a receptor for various structurally unrelated PAMPs, recent studies have suggested that, via their lipid moiety, bacterial Lpps function as the major, if not the sole, ligand molecules responsible for TLR2 activation (15). Although Gram-negative Lpps have been widely studied, little information is available for Gram-positive Lpps (16) and the ways they are released into the bacterial extracellular compartment and reach the host immune system remain unclear.We focused our attention on Lpps release by Streptococcus pyogenes. This Gram-positive bacterium is an important human pathogen that causes a wide range of diseases from superficial and self-limiting infection, e.g. pharyngitis and impetigo, to more systemic or invasive diseases like necrotizing fasciitis and septicemia (17). Understanding the role of bacterial Lpps in mediating innate and acquired immunity can be instrumental for the therapy and prophylaxis of human S. pyogenes infections. In this study, we showed that in S. pyogenes Lpps are released into the growth medium within vesicle-like structures in minute amounts. Conditions weakening the bacterial cell wall, such as the addition of sublethal concentrations of penicillin to the bacterial growth medium enhanced this phenomenon and allowed the recovery of sufficient material to enable an in-depth characterization. Proteomic analysis of the vesicles revealed that they were almost exclusively constituted of Lpps. A total of 28 Lpps were identified, representing more than 72% of the Lpps predicted from the genome of the strain under investigation. In addition, multiple transmembrane domain proteins were not found in abundance associated to the vesicles, indicating that vesicles were not representative of the bacterial membrane. We defined these vesicles as Lipoprotein-rich Membrane Vesicles (LMVs).Common characteristics are shared between the LMVs and the ExPortal described for the first time by Rosch and Caparon (18). This asymmetric and distinct membrane microdomain has been reported to be enriched in anionic phospholipids and acts in promoting the biogenesis of secreted proteins by coordinating interactions between nascent unfolded secretory proteins and the accessory factors required for their maturation (1921). An association between ExPortal and peptidoglycan synthesis has also been reported (22). Similarly, LMVs are enriched in anionic phosphatidylglycerol, enzymes involved in protein maturation/secretion and cell wall biogenesis, suggesting that LMVs might derive from the ExPortal. Finally, we showed that LMVs do not induce TLR2 activation, indicating that the Lpps did not act as PAMPs when integrated into the LMVs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号