全文获取类型
收费全文 | 11207篇 |
免费 | 528篇 |
国内免费 | 1篇 |
专业分类
11736篇 |
出版年
2024年 | 22篇 |
2023年 | 105篇 |
2022年 | 149篇 |
2021年 | 306篇 |
2020年 | 160篇 |
2019年 | 218篇 |
2018年 | 270篇 |
2017年 | 249篇 |
2016年 | 384篇 |
2015年 | 591篇 |
2014年 | 623篇 |
2013年 | 816篇 |
2012年 | 937篇 |
2011年 | 833篇 |
2010年 | 524篇 |
2009年 | 519篇 |
2008年 | 642篇 |
2007年 | 560篇 |
2006年 | 524篇 |
2005年 | 507篇 |
2004年 | 442篇 |
2003年 | 393篇 |
2002年 | 380篇 |
2001年 | 158篇 |
2000年 | 121篇 |
1999年 | 123篇 |
1998年 | 110篇 |
1997年 | 93篇 |
1996年 | 70篇 |
1995年 | 59篇 |
1994年 | 53篇 |
1993年 | 60篇 |
1992年 | 55篇 |
1991年 | 50篇 |
1990年 | 48篇 |
1989年 | 42篇 |
1988年 | 38篇 |
1987年 | 45篇 |
1986年 | 20篇 |
1985年 | 44篇 |
1984年 | 40篇 |
1983年 | 32篇 |
1982年 | 31篇 |
1981年 | 28篇 |
1978年 | 24篇 |
1977年 | 30篇 |
1976年 | 18篇 |
1975年 | 18篇 |
1974年 | 17篇 |
1973年 | 19篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
151.
González-Rosa JM Martín V Peralta M Torres M Mercader N 《Development (Cambridge, England)》2011,138(9):1663-1674
The zebrafish heart has the capacity to regenerate after ventricular resection. Although this regeneration model has proved useful for the elucidation of certain regeneration mechanisms, it is based on the removal of heart tissue rather than its damage. Here, we characterize the cellular response and regenerative capacity of the zebrafish heart after cryoinjury, an alternative procedure that more closely models the pathophysiological process undergone by the human heart after myocardial infarction (MI). Localized damage was induced in 25% of the ventricle by cryocauterization (CC). During the first 24 hours post-injury, CC leads to cardiomyocyte death within the injured area and the near coronary vasculature. Cell death is followed by a rapid proliferative response in endocardium, epicardium and myocardium. During the first 3 weeks post-injury cell debris was cleared and the injured area replaced by a massive scar. The fibrotic tissue was subsequently degraded and replaced by cardiac tissue. Although animals survived CC, their hearts showed nonhomogeneous ventricular contraction and had a thickened ventricular wall, suggesting that regeneration is associated with processes resembling mammalian ventricular remodeling after acute MI. Our results provide the first evidence that, like mammalian hearts, teleost hearts undergo massive fibrosis after cardiac damage. Unlike mammals, however, the fish heart can progressively eliminate the scar and regenerate the lost myocardium, indicating that scar formation is compatible with myocardial regeneration and the existence of endogenous mechanisms of scar regression. This finding suggests that CC-induced damage in zebrafish could provide a valuable model for the study of the mechanisms of scar removal post-MI. 相似文献
152.
An assessment of the ultrasonic probe-based enhancement of protein cleavage with immobilized trypsin
Vale G Santos HM Carreira RJ Fonseca L Miró M Cerdà V Reboiro-Jato M Capelo JL 《Proteomics》2011,11(19):3866-3876
The use of ultrasonic probe, in conjunction with immobilized trypsin, has been explored in this work for potential enhancement of protein digestion. Several solid supports commonly used to immobilize trypsin were subjected to different ultrasonication amplitudes and time in order to investigate their mechanical resistance to ultrasonic energy when provided by the ultrasonic probe. Glass beads and magnetic particles were found to remain intact in most conditions studied. It was found that immobilized trypsin cannot be reused after ultrasonication since the enzymatic activity was greatly diminished. For comparative purposes, vortex shaking was also explored for protein cleavage. Four standard proteins--bovine serum albumin, α-lactalbumin, carbonic anhydrase and ovalbumin--were successfully identified using peptide mass fingerprint, or peptide fragment fingerprint. In addition, the performance of the classical protein cleavage (overnight, 12 h) and the ultrasonic methods was found to be similar when the digestion of a complex proteome, human plasma, was assessed through 18-O quantification. The digestion yields found were 90-117% for the ultrasonic and 5-21% for the vortex when those methods were compared with the classical overnight digestion. 相似文献
153.
Cifuentes M García MA Arrabal PM Martínez F Yañez MJ Jara N Weil B Domínguez D Medina RA Nualart F 《Journal of cellular physiology》2011,226(6):1425-1432
Osteosarcoma is the most common type of malignant bone cancer, accounting for 35% of primary bone malignancies. Because cancer cells utilize glucose as their primary energy substrate, the expression and regulation of glucose transporters (GLUT) may be important in tumor development and progression. GLUT expression has not been studied previously in human osteosarcoma cell lines. Furthermore, although insulin and insulin-like growth factor (IGF-I) play an important role in cell proliferation and tumor progression, the role of these hormones on GLUT expression and glucose uptake, and their possible relation to osteosarcoma, have also not been studied. We determined the effect of insulin and IGF-I on GLUT expression and glucose transport in three well-characterized human osteosarcoma cell lines (MG-63, SaOs-2, and U2-Os) using immunocytochemical, RT-PCR and functional kinetic analyses. Furthermore we also studied GLUT isoform expression in osteosarcoma primary tumors and metastases by in situ hybridization and immunohistochemical analyses. RT-PCR and immunostaining show that GLUT1 is the main isoform expressed in the cell lines and tissues studied, respectively. Immunocytochemical analysis shows that although insulin does not affect levels of GLUT1 expression it does induce a translocation of the transporter to the plasma membrane. This translocation is associated with increased transport of glucose into the cell. GLUT1 is the main glucose transporter expressed in osteosarcoma, furthermore, this transporter is regulated by insulin in human MG-63 cells. One possible mechanism through which insulin is involved in cancer progression is by increasing the amount of glucose available to the cancer cell. 相似文献
154.
Meirav Meiri Adrian M. Lister Thomas F. G. Higham John R. Stewart Lawrence G. Straus Henriette Obermaier Manuel R. González Morales Ana B. Marín‐Arroyo Ian Barnes 《Molecular ecology》2013,22(18):4711-4722
The Pleistocene was an epoch of extreme climatic and environmental changes. How individual species responded to the repeated cycles of warm and cold stages is a major topic of debate. For the European fauna and flora, an expansion–contraction model has been suggested, whereby temperate species were restricted to southern refugia during glacial times and expanded northwards during interglacials, including the present interglacial (Holocene). Here, we test this model on the red deer (Cervus elaphus) a large and highly mobile herbivore, using both modern and ancient mitochondrial DNA from the entire European range of the species over the last c. 40 000 years. Our results indicate that this species was sensitive to the effects of climate change. Prior to the Last Glacial Maximum (LGM) haplogroups restricted today to South‐East Europe and Western Asia reached as far west as the UK. During the LGM, red deer was mainly restricted to southern refugia, in Iberia, the Balkans and possibly in Italy and South‐Western Asia. At the end of the LGM, red deer expanded from the Iberian refugium, to Central and Northern Europe, including the UK, Belgium, Scandinavia, Germany, Poland and Belarus. Ancient DNA data cannot rule out refugial survival of red deer in North‐West Europe through the LGM. Had such deer survived, though, they were replaced by deer migrating from Iberia at the end of the glacial. The Balkans served as a separate LGM refugium and were probably connected to Western Asia with genetic exchange between the two areas. 相似文献
155.
Maria V. Carroll Robert B. Sim Fabiana Bigi Anne J?kel Robin Antrobus Daniel A. Mitchell 《蛋白质与细胞》2010,1(9):859
Dendritic-cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN; CD209) has an important role in mediating adherence of Mycobacteria species, including M. tuberculosis and M. bovis BCG to human dendritic cells and macrophages, in which these bacteria can survive intracellularly. DC-SIGN is a C-type lectin, and interactions with mycobacterial cells are believed to occur via mannosylated structures on the mycobacterial surface. Recent studies suggest more varied modes of binding to multiple mycobacterial ligands. Here we identify, by affinity chromatography and mass-spectrometry, four novel ligands of M. bovis BCG that bind to DC-SIGN. The novel ligands are chaperone protein DnaK, 60 kDa chaperonin-1 (Cpn60.1), glyceraldehyde-3 phosphate dehydrogenase (GAPDH) and lipoprotein lprG. Other published work strongly suggests that these are on the cell surface. Of these ligands, lprG appears to bind DC-SIGN via typical protein-glycan interactions, but DnaK and Cpn60.1 binding do not show evidence of carbohydrate-dependent interactions. LprG was also identified as a ligand for DC-SIGNR (L-SIGN; CD299) and the M. tuberculosis orthologue of lprG has been found previously to interact with human toll-like receptor 2. Collectively, these findings offer new targets for combating mycobacterial adhesion and within-host survival, and reinforce the role of DC-SIGN as an important host ligand in mycobacterial infection. 相似文献
156.
Athanasios Didangelos Xiaoke Yin Kaushik Mandal Mark Baumert Marjan Jahangiri Manuel Mayr 《Molecular & cellular proteomics : MCP》2010,9(9):2048-2062
The vascular extracellular matrix (ECM) is essential for the structural integrity of the vessel wall and also serves as a substrate for the binding and retention of secreted products of vascular cells as well as molecules coming from the circulation. Although proteomics has been previously applied to vascular tissues, few studies have specifically targeted the vascular ECM and its associated proteins. Thus, its detailed composition remains to be characterized. In this study, we describe a methodology for the extraction of extracellular proteins from human aortas and their identification by proteomics. The approach is based on (a) effective decellularization to enrich for scarce extracellular proteins, (b) successful solubilization and deglycosylation of ECM proteins, and (c) relative estimation of protein abundance using spectral counting. Our three-step extraction approach resulted in the identification of 103 extracellular proteins of which one-third have never been reported in the proteomics literature of vascular tissues. In particular, three glycoproteins (podocan, sclerostin, and agrin) were identified for the first time in human aortas at the protein level. We also identified extracellular adipocyte enhancer-binding protein 1, the cartilage glycoprotein asporin, and a previously hypothetical protein, retinal pigment epithelium (RPE) spondin. Moreover, our methodology allowed us to screen for proteolysis in the aortic samples based on the identification of proteolytic enzymes and their corresponding degradation products. For instance, we were able to detect matrix metalloproteinase-9 by mass spectrometry and relate its presence to degradation of fibronectin in a clinical specimen. We expect this proteomics methodology to further our understanding of the composition of the vascular extracellular environment, shed light on ECM remodeling and degradation, and provide insights into important pathological processes, such as plaque rupture, aneurysm formation, and restenosis.Vascular cells, in particular vascular smooth muscle cells, produce and maintain a complex meshwork of ECM.1 The ECM is not only the scaffold for the anchorage and mobility of residing cells but also absorbs and transduces the shear and strain forces of the blood flow. It is primarily composed of elastin, collagen, proteoglycans, and glycoproteins. The elastin fibers and type I and III fibrillar collagens form a rigid network of highly cross-linked interstitial matrix. They offer elasticity (elastin) and tensile strength (collagens). Proteoglycans, because of their negative charge, attract water and confer resistance to compression. Finally, glycoproteins participate in matrix organization and are essential for cell attachment.The vascular ECM also serves as a substrate for the binding and retention of secreted, soluble proteins of vascular cells as well as molecules coming from the circulation, including lipoproteins, growth factors, cytokines, proteases, and protease inhibitors. These components are invariably associated with ECM proteins, especially proteoglycans. Together they comprise the vascular extracellular environment and are pivotal for disease processes, such as atherosclerosis and aneurysm formation (1).Although proteomics has been previously applied to vascular tissues, only one study has specifically targeted the extracellular vascular environment (2). This study was focused on the isolation of intimal proteoglycans from human carotid arteries. Moreover, most proteomics studies use whole tissue lysates, which are rich in cellular proteins that inevitably mask the identification of the less abundant proteins of the vascular extracellular environment (3–5). Thus, the composition of the vascular ECM and its associated proteins remains poorly defined. In the present study, we used morphologically normal human aortic samples to develop a method for the extraction of proteins present in the extracellular environment, including ECM proteins and proteins attached to the ECM. We had three specific aims: first, to reduce the contamination with cellular proteins, thereby increasing the chance of identifying scarce extracellular proteins; second, to efficiently solubilize and deglycosylate ECM proteins to improve their analysis by liquid chromatography tandem mass spectrometry (LC-MS/MS); and third, to interface the nanoflow LC system to a recently developed injection device, which splits the flow from the analytical column, to allow the reanalysis of the same sample during a single LC-MS/MS run (RePlay, Advion).Our methodology provides a detailed overview of the aortic ECM and its associated proteins, many reported for the first time in proteomics analysis of the vasculature. Most importantly, this method could be adapted for use with other tissues to further our understanding of the composition of extracellular environment and ECM turnover under various disease conditions. 相似文献
157.
Bacterial toxin–antitoxin (TA) systems are diverse and widespread in the prokaryotic kingdom. They are composed of closely linked genes encoding a stable toxin that can harm the host cell and its cognate labile antitoxin, which protects the host from the toxin's deleterious effect. TA systems are thought to invade bacterial genomes through horizontal gene transfer. Some TA systems might behave as selfish elements and favour their own maintenance at the expense of their host. As a consequence, they may contribute to the maintenance of plasmids or genomic islands, such as super-integrons, by post-segregational killing of the cell that loses these genes and so suffers the stable toxin's destructive effect. The function of the chromosomally encoded TA systems is less clear and still open to debate. This Review discusses current hypotheses regarding the biological roles of these evolutionarily successful small operons. We consider the various selective forces that could drive the maintenance of TA systems in bacterial genomes. 相似文献
158.
Raphael Saginur Stephen S. Silver Richard Bonin Maureen Carlier Manuel Orizaga 《CMAJ》1985,133(12):1228-1230
159.
160.
Solar Cells: Large Efficiency Improvement in Cu2ZnSnSe4 Solar Cells by Introducing a Superficial Ge Nanolayer (Adv. Energy Mater. 21/2015)
下载免费PDF全文
![点击此处可从《Liver Transplantation》网站下载免费的PDF全文](/ch/ext_images/free.gif)