首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9536篇
  免费   754篇
  2023年   97篇
  2022年   138篇
  2021年   282篇
  2020年   150篇
  2019年   202篇
  2018年   252篇
  2017年   229篇
  2016年   342篇
  2015年   505篇
  2014年   563篇
  2013年   733篇
  2012年   812篇
  2011年   761篇
  2010年   447篇
  2009年   472篇
  2008年   579篇
  2007年   481篇
  2006年   450篇
  2005年   433篇
  2004年   400篇
  2003年   347篇
  2002年   338篇
  2001年   113篇
  2000年   88篇
  1999年   102篇
  1998年   100篇
  1997年   85篇
  1996年   64篇
  1995年   55篇
  1994年   51篇
  1993年   52篇
  1992年   40篇
  1991年   35篇
  1990年   39篇
  1989年   32篇
  1988年   28篇
  1987年   33篇
  1986年   15篇
  1985年   33篇
  1984年   33篇
  1983年   24篇
  1982年   25篇
  1981年   23篇
  1980年   16篇
  1978年   16篇
  1977年   25篇
  1975年   11篇
  1974年   23篇
  1973年   16篇
  1972年   13篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
901.
An estimated 500-1 000 Arabidopsis (Arabidopsis thaliana) genes mutate to embryonic lethality. In addition, several hundred mutations have been identified that cause gametophytic lethality. Thus, a significant fraction of the ~25,000 protein-coding genes in Arabidopsis are indispensable to the early stages of the diploid phase or to the haploid gametophytic phase. The expression patterns of many of these genes indicate that they also act later in development but, because the mutants die at such early stages, conventional methods limit the study of their roles in adult diploid plants. Here, we describe the toolset that allows researchers to assess the post-embryonic functions of plant genes for which only gametophytic- and embryonic-lethal alleles have been isolated.  相似文献   
902.
The decomposition of plant litter is one of the most important ecosystem processes in the biosphere and is particularly sensitive to climate warming. Aquatic ecosystems are well suited to studying warming effects on decomposition because the otherwise confounding influence of moisture is constant. By using a latitudinal temperature gradient in an unprecedented global experiment in streams, we found that climate warming will likely hasten microbial litter decomposition and produce an equivalent decline in detritivore-mediated decomposition rates. As a result, overall decomposition rates should remain unchanged. Nevertheless, the process would be profoundly altered, because the shift in importance from detritivores to microbes in warm climates would likely increase CO(2) production and decrease the generation and sequestration of recalcitrant organic particles. In view of recent estimates showing that inland waters are a significant component of the global carbon cycle, this implies consequences for global biogeochemistry and a possible positive climate feedback.  相似文献   
903.
Insulin resistance is the most important pathophysiological feature in many pre-diabetic states. Type 2 diabetes mellitus is a complex metabolic disease and its pathogenesis involves abnormalities in both peripheral insulin action and insulin secretion by pancreatic beta cells. The creation of monogenic or polygenic genetically manipulated mice models in a tissue-specific manner was of great help to elucidate the tissue-specificity of insulin action and its contribution to the overall insulin resistance. However, complete understanding of the molecular bases of the insulin action and resistance requires the identification of the intracellular pathways that regulate insulin-stimulated proliferation, differentiation and metabolism. Accordingly, cell lines derived from insulin target tissues such as brown adipose tissue, liver and beta islets lacking insulin receptors or sensitive candidate genes such as IRS-1, IRS-2, IRS-3, IR and PTP1B were developed. Indeed, these cell lines have been also very useful to understand the tissue-specificity of insulin action and inaction.  相似文献   
904.

Background  

Two component systems (TCS) are signal transduction pathways which typically consist of a sensor histidine kinase (HK) and a response regulator (RR). In this study, we have analyzed the evolution of TCS of the OmpR/IIIA family in Lactobacillaceae and Leuconostocaceae, two families belonging to the group of lactic acid bacteria (LAB). LAB colonize nutrient-rich environments such as foodstuffs, plant materials and the gastrointestinal tract of animals thus driving the study of this group of both basic and applied interest.  相似文献   
905.
Most of the archived pathological specimens in hospitals are kept as formalin-fixed paraffin-embedded tissues (FFPE) for long-term preservation. Up to now, these samples are only used for immunohistochemistry in a clinical routine as it is difficult to recover intact protein from these FFPE tissues. Here, we report a novel, short time-consuming and cost-effective method to extract full-length, non-degraded proteins from FFPE tissues. This procedure is combined with an effective and non-toxic deparaffinisation process and an extraction method based on antigen-retrieval, high concentration of SDS and high temperature. We have obtained enough intact protein to be detected by Western blotting analysis. This technique will allow utilising these stored FFPE tissues in several applications for protein analysis helping to advance the translational studies in cancer and other diseases.  相似文献   
906.
The use of ultrasonic probe, in conjunction with immobilized trypsin, has been explored in this work for potential enhancement of protein digestion. Several solid supports commonly used to immobilize trypsin were subjected to different ultrasonication amplitudes and time in order to investigate their mechanical resistance to ultrasonic energy when provided by the ultrasonic probe. Glass beads and magnetic particles were found to remain intact in most conditions studied. It was found that immobilized trypsin cannot be reused after ultrasonication since the enzymatic activity was greatly diminished. For comparative purposes, vortex shaking was also explored for protein cleavage. Four standard proteins--bovine serum albumin, α-lactalbumin, carbonic anhydrase and ovalbumin--were successfully identified using peptide mass fingerprint, or peptide fragment fingerprint. In addition, the performance of the classical protein cleavage (overnight, 12 h) and the ultrasonic methods was found to be similar when the digestion of a complex proteome, human plasma, was assessed through 18-O quantification. The digestion yields found were 90-117% for the ultrasonic and 5-21% for the vortex when those methods were compared with the classical overnight digestion.  相似文献   
907.
The effect of betacarotene (BC) supplementation on the onset of puberty and serum insulin levels in goats was evaluated in the study. In June, prepuberal goats (n=17; 3 months old; 7/8 Saanen-Alpine; 26° NL) were randomly assigned to one of two groups: 1/ betacarotene group supplemented daily with 50 mg of BC (n=9; live weight [LW]: 17.3±1.0 kg; body condition score [BCS]: 3.34±0.12) or 2/ control group (CONT; n=8; LW:16.1±1.0 kg; BCS=3.17±0.12). From June to November, an intermittent blood sampling was performed twice per week in both groups to evaluate serum progesterone (P(4)), while monthly samples were intended for insulin (INS) determination. Initial mean LW (16.7±1.0 kg) and BCS (3.31±0.12) were similar (p>0.05) in both groups. Mean serum insulin (1.37 vs. 1.18±0.09 ng/ml), age of puberty (215.7 vs. 226.5±6.6 days) and the percentage of goats reaching puberty (44.4 vs. 25.0±17.0%) did not differ (p>0.05) between BC and CONT group, respectively. However, increase in serum insulin during the second half of the experiment was observed in BC group (p<0.05) which was positively correlated with LW (r=0.95; p<0.05). In addition, as LW (r=-0.89) and serum insulin (r=-0.76) levels increased, the natural photoperiod decreased, revealing negative correlations (p<0.05) between the respective variables. In this study, BC supplementation did not promote precocious puberty and did not affect the percentage of goats reaching activation of the hypothalamic-hypophyseal-gonadal axis during the establishment of puberty. Nonetheless, BC supplementation positively affected the release pattern of insulin suggesting a potential role of BC as pancreas-activating molecule.  相似文献   
908.

Background

Visceral leishmaniasis (VL) is characterized by parasite-specific immunosuppression besides an intense pro-inflammatory response. Lipopolisaccharide (LPS) has been implicated in the immune activation of T-cell deficient diseases such as HIV/AIDS and idiopathic lymphocytopenia. The source of LPS is gram-negative bacteria that enter the circulation because of immunological mucosal barrier breakdown. As gut parasitization also occurs in VL, it was hypothesized that LPS may be elevated in leishmaniasis, contributing to cell activation.

Methodology/Principal Findings

Flow cytometry analysis and immunoassays (ELISA and luminex micro-beads system) were used to quantify T-cells and soluble factors. Higher LPS and soluble CD14 levels were observed in active VL in comparison to healthy subjects, indicating that LPS was bioactive; there was a positive correlation between these molecules (r = 0.61;p<0.05). Interestingly, LPS was negatively correlated with CD4+ (r = −0.71;p<0.01) and CD8+ T-cells (r = −0.65;p<0.05). Moreover, higher levels of activation-associated molecules (HLA-DR, CD38, CD25) were seen on T lymphocytes, which were positively associated with LPS levels. Pro-inflammatory cytokines and macrophage migration inhibitory factor (MIF) were also augmented in VL patients. Consistent with the higher immune activation status, LPS levels were positively correlated with the inflammatory cytokines IL-6 (r = 0.63;p<0.05), IL-8 (r = 0.89;p<0.05), and MIF (r = 0.64;p<0.05). Also, higher plasma intestinal fatty acid binding protein (IFABP) levels were observed in VL patients, which correlated with LPS levels (r = 0.57;p<0.05).

Conclusions/Significance

Elevated levels of LPS in VL, in correlation with T-cell activation and elevated pro-inflammatory cytokines and MIF indicate that this bacterial product may contribute to the impairment in immune effector function. The cytokine storm and chronic immune hyperactivation status may contribute to the observed T-cell depletion. LPS probably originates from microbial translocation as suggested by IFABP levels and, along with Leishmania antigen-mediated immune suppression, may play a role in the immunopathogenesis of VL. These findings point to possible benefits of antimicrobial prophylaxis in conjunction with anti-Leishmania therapy.  相似文献   
909.
The Protein C anticoagulant pathway regulates blood coagulation by preventing the inadequate formation of thrombi. It has two main plasma components: protein C and protein S. Individuals with protein C or protein S deficiency present a dramatically increased incidence of thromboembolic disorders. Here, we present the results of a genome-wide association study (GWAS) for protein C and protein S plasma levels in a set of extended pedigrees from the Genetic Analysis of Idiopathic Thrombophilia (GAIT) Project. A total number of 397 individuals from 21 families were typed for 307,984 SNPs using the Infinium® 317 k Beadchip (Illumina). Protein C and protein S (free, functional and total) plasma levels were determined with biochemical assays for all participants. Association with phenotypes was investigated through variance component analysis. After correcting for multiple testing, two SNPs for protein C plasma levels (rs867186 and rs8119351) and another two for free protein S plasma levels (rs1413885 and rs1570868) remained significant on a genome-wide level, located in and around the PROCR and the DNAJC6 genomic regions respectively. No SNPs were significantly associated with functional or total protein S plasma levels, although rs1413885 from DNAJC6 showed suggestive association with the functional protein S phenotype, possibly indicating that this locus plays an important role in protein S metabolism. Our results provide evidence that PROCR and DNAJC6 might play a role in protein C and free protein S plasma levels in the population studied, warranting further investigation on the role of these loci in the etiology of venous thromboembolism and other thrombotic diseases.  相似文献   
910.

Background

The cell-material interaction is a complex bi-directional and dynamic process that mimics to a certain extent the natural interactions of cells with the extracellular matrix. Cells tend to adhere and rearrange adsorbed extracellular matrix (ECM) proteins on the material surface in a fibril-like pattern. Afterwards, the ECM undergoes proteolytic degradation, which is a mechanism for the removal of the excess ECM usually approximated with remodeling. ECM remodeling is a dynamic process that consists of two opposite events: assembly and degradation.

Methodology/Principal Findings

This work investigates matrix protein dynamics on mixed self-assembled monolayers (SAMs) of –OH and –CH3 terminated alkanethiols. SAMs assembled on gold are highly ordered organic surfaces able to provide different chemical functionalities and well-controlled surface properties. Fibronectin (FN) was adsorbed on the different surfaces and quantified in terms of the adsorbed surface density, distribution and conformation. Initial cell adhesion and signaling on FN-coated SAMs were characterized via the formation of focal adhesions, integrin expression and phosphorylation of FAKs. Afterwards, the reorganization and secretion of FN was assessed. Finally, matrix degradation was followed via the expression of matrix metalloproteinases MMP2 and MMP9 and correlated with Runx2 levels. We show that matrix degradation at the cell material interface depends on surface chemistry in MMP-dependent way.

Conclusions/Significance

This work provides a broad overview of matrix remodeling at the cell-material interface, establishing correlations between surface chemistry, FN adsorption, cell adhesion and signaling, matrix reorganization and degradation. The reported findings improve our understanding of the role of surface chemistry as a key parameter in the design of new biomaterials. It demonstrates the ability of surface chemistry to direct proteolytic routes at the cell-material interface, which gains a distinct bioengineering interest as a new tool to trigger matrix degradation in different biomedical applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号