首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   520篇
  免费   64篇
  584篇
  2022年   6篇
  2021年   17篇
  2019年   6篇
  2018年   23篇
  2017年   5篇
  2016年   12篇
  2015年   27篇
  2014年   28篇
  2013年   29篇
  2012年   35篇
  2011年   33篇
  2010年   15篇
  2009年   15篇
  2008年   27篇
  2007年   29篇
  2006年   26篇
  2005年   17篇
  2004年   30篇
  2003年   16篇
  2002年   10篇
  1999年   6篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1995年   4篇
  1994年   4篇
  1992年   5篇
  1991年   11篇
  1990年   9篇
  1989年   11篇
  1988年   5篇
  1987年   3篇
  1986年   7篇
  1985年   9篇
  1984年   6篇
  1983年   8篇
  1981年   3篇
  1980年   4篇
  1979年   4篇
  1978年   4篇
  1977年   3篇
  1976年   7篇
  1975年   5篇
  1974年   11篇
  1973年   3篇
  1972年   5篇
  1971年   4篇
  1970年   3篇
  1967年   3篇
  1965年   3篇
排序方式: 共有584条查询结果,搜索用时 15 毫秒
21.
End binding protein 1 (EB1) and cytoplasmic linker protein of 170 kDa (CLIP-170) are two well-studied microtubule plus-end-tracking proteins (+TIPs) that target growing microtubule plus ends in the form of comet tails and regulate microtubule dynamics. However, the mechanism by which they regulate microtubule dynamics is not well understood. Using full-length EB1 and a minimal functional fragment of CLIP-170 (ClipCG12), we found that EB1 and CLIP-170 cooperatively regulate microtubule dynamic instability at concentrations below which neither protein is effective. By use of small-angle X-ray scattering and analytical ultracentrifugation, we found that ClipCG12 adopts a largely extended conformation with two noninteracting CAP-Gly domains and that it formed a complex in solution with EB1. Using a reconstituted steady-state mammalian microtubule system, we found that at a low concentration of 250 nM, neither EB1 nor ClipCG12 individually modulated plus-end dynamic instability. Higher concentrations (up to 2 μM) of the two proteins individually did modulate dynamic instability, perhaps by a combination of effects at the tips and along the microtubule lengths. However, when low concentrations (250 nM) of EB1 and ClipCG12 were present together, the mixture modulated dynamic instability considerably. Using a pulsing strategy with [γ(32)P]GTP, we further found that unlike EB1 or ClipCG12 alone, the EB1-ClipCG12 mixture partially depleted the microtubule ends of stably bound (32)P(i). Together, our results suggest that EB1 and ClipCG12 act cooperatively to regulate microtubule dynamics. They further indicate that stabilization of microtubule plus ends by the EB1-ClipCG12 mixture may involve modification of an aspect of the stabilizing cap.  相似文献   
22.
23.
P Dubin  F E Karasz 《Biopolymers》1972,11(8):1745-1763
Optical rotatory dispersion measurements were used to follow the transition from the helical to the random coil conformation of poly-β-benzyl-L -aspartate as induced by changes in temperature and solvent composition in mixtures of dioxane and dimethylsulfoxide. Within experimental error, there is no difference in the stability of the helical state as measured in this way for the protonated and deuterated forms of the polypeptide. This result is considered in terms of previous attempts to study the isotope effect on conformational transitions of helical biological macromolecules and polypeptides. The conclusion is drawn that the apparent changes in conformational stability observed in these previous systems arise from alteration of the properties of the solvent. Speculations are advanced regarding the contribution of the interpeptide bond to the stability of the helical state.  相似文献   
24.
25.
In experiments on dogs using the chemiluminescent method and nitroblue-tetrazole reaction the authors found out that leucocytes while passing through the pulmonary vessels bed, in contrast to the spleen increase the generation of active microbicidal forms of oxygen. Due to this fact we suppose that the lungs may take part in the formation of free radical status and phagocytic antiinfectious defence of the organism.  相似文献   
26.
The 5′ sequence of Sindbis viral RNA is m 7G5′ pppApUpGp...  相似文献   
27.
Chagas’ disease, caused by the protozoan parasite Trypanosoma cruzi, affects 8–10 million people across the Latin American population and is responsible for around 12,500 deaths per annum. The current frontline treatments, benznidazole and nifurtimox, are associated with side effects and lack efficacy in the chronic stage of the disease, leading to an urgent need for new treatments. A high throughput screening campaign against the physiologically relevant intracellular form of the parasite identified a series of 2,4-diamino-6-methylpyrimidines. Demonstrating the series did not work through the anti-target TcCYP51, and was generally cytocidal, confirmed its suitability for further development. This study reports the optimisation of selectivity and metabolic stability of the series and identification of a suitable lead for further optimisation.  相似文献   
28.
29.
Cell volume regulation is fundamentally important in phenomena such as cell growth, proliferation, tissue homeostasis, and embryogenesis. How the cell size is set, maintained, and changed over a cell’s lifetime is not well understood. In this work we focus on how the volume of nonexcitable tissue cells is coupled to the cell membrane electrical potential and the concentrations of membrane-permeable ions in the cell environment. Specifically, we demonstrate that a sudden cell depolarization using the whole-cell patch clamp results in a 50% increase in cell volume, whereas hyperpolarization results in a slight volume decrease. We find that cell volume can be partially controlled by changing the chloride or the sodium/potassium concentrations in the extracellular environment while maintaining a constant external osmotic pressure. Depletion of external chloride leads to a volume decrease in suspended HN31 cells. Introducing cells to a high-potassium solution causes volume increase up to 50%. Cell volume is also influenced by cortical tension: actin depolymerization leads to cell volume increase. We present an electrophysiology model of water dynamics driven by changes in membrane potential and the concentrations of permeable ions in the cells surrounding. The model quantitatively predicts that the cell volume is directly proportional to the intracellular protein content.  相似文献   
30.
Complexation of alcohol dehydrogenase (ADH) and trypsin with poly(diallyldimethyl-ammonium chloride) (PDADMAC) in dilute electrolyte solution was studied by turbidimetric titration, quasi-elastic light scattering (QELS), and electrophoretic light scattering (ELS). Both QELS and turbidimetric titration show that PDADMAC forms complexes with ADH and trypsin in 0.01M NaCl solution at pH ≥ 6.8 and pH ≥ 9.2, respectively. These complexes take the form of stable coacervates in 0.01M, pH 11.0, phosphate buffer solution. QELS shows sizes of 400 and 315 nm for the coacervates of ADH-PDMDAAC and trypsin-PDMDAAC, respectively, while ELS reveals that these coacervates carry a net positive charge. Activity measurements show that both ADH and trypsin are enzymatically active in their coacervated states. Complexation of trypsin and PDADMAC was also studied by fluorescence in 0.01M, pH 11.0, phosphate buffer, and the protein emission was found to be quenched by complexation. The fluorescence quenching data show that trypsin retains its three-dimensional structure in the complex. These and other results are consistent with the quenching of the two tryptophans on the protein surface, but not the interior ones.© 1997 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号