首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189篇
  免费   11篇
  2021年   4篇
  2019年   5篇
  2018年   2篇
  2017年   4篇
  2016年   5篇
  2015年   6篇
  2014年   7篇
  2013年   10篇
  2012年   12篇
  2011年   5篇
  2010年   5篇
  2009年   12篇
  2008年   4篇
  2007年   7篇
  2006年   5篇
  2004年   4篇
  2003年   7篇
  2002年   2篇
  2001年   3篇
  2000年   4篇
  1999年   2篇
  1998年   7篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1991年   2篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1981年   2篇
  1980年   3篇
  1977年   2篇
  1974年   3篇
  1972年   2篇
  1934年   2篇
  1917年   1篇
  1912年   4篇
  1908年   2篇
  1905年   1篇
  1904年   2篇
  1903年   2篇
  1901年   1篇
  1900年   1篇
  1892年   3篇
排序方式: 共有200条查询结果,搜索用时 15 毫秒
21.

Background

The Major Adverse Cardiovascular Events calculator (CRCRTR-MACE) estimates the burden of cardiovascular risk in renal transplant recipients (RTR). Our recent study of 95 RTR reported the 7-year median risk of cardiovascular events (CVE) to be 9.97%, ranging from 1.93 to 84.27%. Nearly a third (28.4%) of the cohort was above 20% risk for a CVE. Since interleukins (ILs) as part of the inflammatory response may play a role in the pathogenesis of cardiovascular disease (CVD), we extended this study to identify which ILs are associated with high cardiovascular risk in this population.

Methods

Twenty-two ILs were measured by multiplexed fluorescent bead-based immunoassay in 95 RTR and 56 normal controls. Stepwise analysis after multivariate determination of significant demographic and inflammatory variables was performed between the high and low-CVD risk groups (which were arbitrarily set at scores <10% and ≥20%, respectively). Normalized data was presented as mean ± SD and non-normalized data as median (minimum–maximum). Significance was measured at <0.05.

Results

27.5% of the low-risk and 31.3% of the high-risk groups had mean IL levels above the 95 percentile of the normal control levels. In the non-parametric analysis IL-6, 9, 16, 17 and 33 were significantly higher in the high-risk group compared to the control. Univariate analysis (UVA) of the high-risk group identified IL-33 as the only IL that remained significantly higher than the control and low-risk groups (p = 0.000). The percentage of patients with IL-33 levels above the 90 percentile of control value in the low and high-risk groups were 15.6% and 52.0%, respectively (p<0.002). UVA of factors significant to high IL-33 levels included estimated glomerular filtration rate (eGFR), while diabetes mellitus, serum phosphorus, microalbuminuria and age also remained significant in the multivariate analysis.

Conclusion

Circulating IL-33 level is positively associated with high CRCRTR-MACE score. Diminished eGFR, age, diabetes, serum phosphorus and microalbuminurea demonstrate significant relationship with elevated IL-33 levels, supporting the possible pathognomonic role of IL-33 in the cardiovascular burden in RTR.  相似文献   
22.
23.
We have demonstrated the accuracy of a spatial stochastic model of Escherichia coli central carbon metabolism using the next subvolume method (NSM), an efficient implementation of the Gillespie direct method of stochastic simulation. Using this model, we demonstrate that compartmentalization of the enzymes comprising an engineered pathway for biosynthesis of R-1,2-propanediol leads to improved kinetic properties for the pathway enzymes, especially when substrate diffusivities are low. Our results suggest that enzyme compartmentalization is a powerful approach for improving the catalytic turnover of a channeled carbon substrate and should be particularly useful when applied to synthetic metabolic pathways that suffer from poor translation efficiency, are present in highly variable copy numbers, and have low turnover for new substrates. Furthermore, this approach represents a generic modeling framework for simultaneously analyzing spatial and stochastic events in cellular metabolism and should enable quantitative evaluation of the effect of enzyme compartmentalization on virtually any recombinant pathway.  相似文献   
24.
Several species of Aspidosperma plants are used to treat diseases in the tropics, including Aspidosperma ramiflorum, which acts against leishmaniasis, an activity that is experimentally confirmed. The species, known as guatambu-yellow, yellow peroba, coffee-peroba andmatiambu, grows in the Atlantic Forest of Brazil in the South to the Southeast regions. Through a guided biofractionation of A. ramiflorum extracts, the plant activity against Plasmodium falciparum was evaluated in vitro for toxicity towards human hepatoma G2 cells, normal monkey kidney cells and nonimmortalised human monocytes isolated from peripheral blood. Six of the seven extracts tested were active at low doses (half-maximal drug inhibitory concentration < 3.8 µg/mL); the aqueous extract was inactive. Overall, the plant extracts and the purified compounds displayed low toxicity in vitro. A nonsoluble extract fraction and one purified alkaloid isositsirikine (compound 5) displayed high selectivity indexes (SI) (= 56 and 113, respectively), whereas compounds 2 and 3 were toxic (SI < 10). The structure, activity and low toxicity of isositsirikine in vitro are described here for the first time in A. ramiflorum, but only the neutral and precipitate plant fractions were tested for activity, which caused up to 53% parasitaemia inhibition of Plasmodium berghei in mice with blood-induced malaria. This plant species is likely to be useful in the further development of an antimalarial drug, but its pharmacological evaluation is still required.  相似文献   
25.
26.

Introduction  

Interleukin-1 (IL-1) and tumor necrosis factor-α (TNF-α) are up-regulated in injured and osteoarthritic knee joints. IL-1 and TNF-α inhibit integrative meniscal repair; however, the mechanisms by which this inhibition occurs are not fully understood. Transforming growth factor-β1 (TGF-β1) increases meniscal cell proliferation and accumulation, and enhances integrative meniscal repair. An improved understanding of the mechanisms modulating meniscal cell proliferation and migration will help to improve approaches for enhancing intrinsic or tissue-engineered repair of the meniscus. The goal of this study was to examine the hypothesis that IL-1 and TNF-α suppress, while TGF-β1 enhances, cellular proliferation and migration in cell and tissue models of meniscal repair.  相似文献   
27.
Biochemical and mechanical properties of subchondral bone in osteoarthritis   总被引:2,自引:0,他引:2  
Bailey AJ  Mansell JP  Sims TJ  Banse X 《Biorheology》2004,41(3-4):349-358
The subchondral bone has long been known to thicken in osteoarthritis. However, recent evidence has demonstrated that the turnover of the bone is increased several fold, and further suggests that the thickening occurs prior to degradation of the articular cartilage, indicating that it plays a role in the pathogenesis of osteoarthritis. The mechanical and biochemical properties of the subchondral bone are therefore of particular interest in any attempt to determine the nature of the factors initiating osteoarthritis. We have shown that the subchondral bone collagen of the femoral head possessed a 20-fold increase in turnover, as assessed by procollagen rate of synthesis and metalloproteinase degradation, and a 25% decrease in mineralisation. This increased metabolism and high lysyl hydroxylation leads to narrower and weaker fibres. Additionally the phenotypic expression of the osteoblasts is modified to produce increasing proportions of type I homotrimer in addition to the normal type I heterotrimer, which further reduces the mechanical strength of the bone. Overall, the narrow immature collagen fibres, the reduction in pyrrole cross-linking, decreased mineralisation, and increased amounts of type I homotrimer, all contribute to a weakening of the mechanical properties of the subchondral bone.  相似文献   
28.
Selenocysteine incorporation in eukaryotes occurs cotranslationally at UGA codons via the interactions of RNA-protein complexes, one comprised of selenocysteyl (Sec)-tRNA([Ser]Sec) and its specific elongation factor, EFsec, and another consisting of the SECIS element and SECIS binding protein, SBP2. Other factors implicated in this pathway include two selenophosphate synthetases, SPS1 and SPS2, ribosomal protein L30, and two factors identified as binding tRNA([Ser]Sec), termed soluble liver antigen/liver protein (SLA/LP) and SECp43. We report that SLA/LP and SPS1 interact in vitro and in vivo and that SECp43 cotransfection increases this interaction and redistributes all three proteins to a predominantly nuclear localization. We further show that SECp43 interacts with the selenocysteyl-tRNA([Ser]Sec)-EFsec complex in vitro, and SECp43 coexpression promotes interaction between EFsec and SBP2 in vivo. Additionally, SECp43 increases selenocysteine incorporation and selenoprotein mRNA levels, the latter presumably due to circumvention of nonsense-mediated decay. Thus, SECp43 emerges as a key player in orchestrating the interactions and localization of the other factors involved in selenoprotein biosynthesis. Finally, our studies delineating the multiple, coordinated protein-nucleic acid interactions between SECp43 and the previously described selenoprotein cotranslational factors resulted in a model of selenocysteine biosynthesis and incorporation dependent upon both cytoplasmic and nuclear supramolecular complexes.  相似文献   
29.
The pro-inflammatory cytokine macrophage migration inhibitory factor (MIF) is induced by glucocorticoids (GCs), but it was not previously known if MIF regulates cellular sensitivity to GC. Here we show in GC and LPS-treated peritoneal macrophages derived from MIF-/- and wt mice that the absence of endogenous MIF is associated with increased sensitivity to GC of TNF release. This is associated with increased expression of mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1), concomitant decreased phosphorylation of p38 MAPK, but no effect of MIF on nuclear factor kappaB (NF-kappaB). These results demonstrate that MIF regulates GC sensitivity by phosphorylation of p38, and provides a cellular mechanism for this observation, indicating that MKP-1 is a central target of this regulation.  相似文献   
30.
Osteoblast maturation is partly controlled by the interaction of 1alpha,25(OH)(2)D(3) (D3), an active metabolite of Vitamin D, with other growth factors. The first reports describing the in vitro effect of D3 on human osteoblast differentiation performed experiments in the presence of serum. One potentially exciting candidate that might help explain the D3 responses observed for osteoblasts cultured with serum is lysophosphatidic acid (LPA). Drawn to the possibility that D3 and serum borne LPA might interact to induce osteoblast maturation we co-treated human cells with D3 and serum in the presence of Ki16425, an LPA receptor antagonist. Ki16425 inhibited osteoblast maturation as determined by markedly reduced alkaline phosphatase (ALP) expression. We subsequently found that LPA and D3 acted synergistically in generating mature osteoblasts and that this differentiation response could be inhibited using pertussis toxin, implying an important role of Galphai signal transduction. Furthermore, we found evidence for a dependency on both mitogen activated protein kinase kinase (MEK) and Rho associated coiled kinase (ROCK) for LPA and D3 stimulated maturation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号