首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189篇
  免费   11篇
  2021年   4篇
  2019年   5篇
  2018年   2篇
  2017年   4篇
  2016年   5篇
  2015年   6篇
  2014年   7篇
  2013年   10篇
  2012年   12篇
  2011年   5篇
  2010年   5篇
  2009年   12篇
  2008年   4篇
  2007年   7篇
  2006年   5篇
  2004年   4篇
  2003年   7篇
  2002年   2篇
  2001年   3篇
  2000年   4篇
  1999年   2篇
  1998年   7篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1991年   2篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1981年   2篇
  1980年   3篇
  1977年   2篇
  1974年   3篇
  1972年   2篇
  1934年   2篇
  1917年   1篇
  1912年   4篇
  1908年   2篇
  1905年   1篇
  1904年   2篇
  1903年   2篇
  1901年   1篇
  1900年   1篇
  1892年   3篇
排序方式: 共有200条查询结果,搜索用时 15 毫秒
11.
Chemical genomics expands our understanding of microbial tolerance to inhibitory chemicals, but its scope is often limited by the throughput of genome-scale library construction and genotype-phenotype mapping. Here we report a method for rapid, parallel, and deep characterization of the response to antibiotics in Escherichia coli using a barcoded genome-scale library, next-generation sequencing, and streamlined bioinformatics software. The method provides quantitative growth data (over 200,000 measurements) and identifies contributing antimicrobial resistance and susceptibility alleles. Using multivariate analysis, we also find that subtle differences in the population responses resonate across multiple levels of functional hierarchy. Finally, we use machine learning to identify a unique allelic and proteomic fingerprint for each antibiotic. The method can be broadly applied to tolerance for any chemical from toxic metabolites to next-generation biofuels and antibiotics.  相似文献   
12.
In this study, we present a minimal template design and accompanying methods to produce assayable quantities of custom sequence proteins within 24 hr from receipt of inexpensive gene fragments from a DNA synthesis vendor. This is done without the conventional steps of plasmid cloning or cell-based amplification and expression. Instead the linear template is PCR amplified, circularized, and isothermally amplified using a rolling circle polymerase. The resulting template can be used directly with cost-optimized, scalably-manufactured Escherichia coli extract and minimal supplement reagents to perform cell-free protein synthesis (CFPS) of the template protein. We demonstrate the utility of this template design and 24 hr process with seven fluorescent proteins (sfGFP, mVenus, mCherry, and four GFP variants), three enzymes (chloramphenicol acetyltransferase, a chitinase catalytic domain, and native subtilisin), a capture protein (anti-GFP nanobody), and 2 antimicrobial peptides (BP100 and CA(1–7)M(2–9)). We detected each of these directly from the CFPS reaction using colorimetric, fluorogenic, and growth assays. Of especial note, the GFP variant sequences were found from genomic screening data and had not been expressed or characterized before, thus demonstrating the utility of this approach for phenotype characterization of sequenced libraries. We also demonstrate that the rolling circle amplified version of the linear template exhibits expression similar to that of a complete plasmid when expressing sfGFP in the CFPS reaction. We evaluate the cost of this approach to be $61/mg sfGFP for a 4 hr reaction. We also detail limitations of this approach and strategies to overcome these, namely proteins with posttranslational modifications.  相似文献   
13.
UGA remains an enigma as a signal in protein synthesis. Long recognized as a stop signal that is prone to failure when under competition from near cognate events, there was growing belief that there might be functional significance in the production of small amounts of extended proteins. This view has been reinforced with the discovery that UGA is found at some recoding sites where frameshifting occurs as a regulatory mechanism for controlling the gene expression of specific proteins, and it also serves as the code for selenocysteine (Sec), the 21st amino acid. Why does UGA among the stop signals play this role specifically, and how does it escape being used to stop protein synthesis efficiently at recoding sites involving Sec incorporation or shifts to a new translational frame? These issues concerning the UGA stop signals are discussed in this review.  相似文献   
14.
The mammalian face is assembled in utero in a series of complex and interdependent molecular, cell and tissue processes. The orofacial complex appears to be exquisitely sensitive to genetic and environmental influence and this explains why clefts of the lip and palate are the most common congenital anomaly in humans (one in 700 live births). In this study, microarray technology was used to identify genes that may play pivotal roles in normal murine palatogenesis. mRNA was isolated from murine embryonic palatal shelves oriented vertically (before elevation), horizontally (following elevation, before contact), and following fusion. Changes in gene expression between the three different stages were analyzed with GeneChip microarrays. A number of genes were upregulated or downregulated, and large changes were seen in the expression of loricrin, glutamate decarboxylase, gamma-amino butyric acid type A receptor beta3 subunit, frizzled, Wnt-5a, metallothionein, annexin VIII, LIM proteins, Sox1, plakophilin1, cathepsin K and creatine kinase. In this paper, the changes in genetic profile of the developing murine palate are presented, and the possible role individual genes/proteins may play during normal palate development are discussed. Candidate genes with a putative role in cleft palate are also highlighted.  相似文献   
15.

Background  

Lung function is a strong predictor of cardiovascular and all-cause mortality. Previous studies suggest that alcohol exposure may be linked to impaired pulmonary function through oxidant-antioxidant mechanisms. Alcohol may be an important source of oxidants; however, wine contains several antioxidants. In this study we analyzed the relation of beverage specific alcohol intake with forced expiratory volume in one second (FEV1) and forced vital capacity (FVC) in a random sample of 1555 residents of Western New York, USA.  相似文献   
16.
SECIS elements recode UGA codons from "stop" to "sense." These RNA secondary structures, present in eukaryotic selenoprotein mRNA 3' untranslated regions, recruit a SECIS binding protein, which recruits a selenocysteine-specific elongation factor-tRNA complex. Elucidation of the assembly of this multicomponent complex is crucial to understanding the mechanism of selenocysteine incorporation. Coprecipitation studies identified the C-terminal 64 amino acids of the elongation factor as sufficient for interaction with the SECIS binding protein. Selenocysteyl-tRNA is required for this interaction; the two factors do not coprecipitate in its absence. Finally, through promoting this interaction, selenocysteyl-tRNA stabilizes the C-terminal domain of the elongation factor. We suggest that the coupling effect is critical to preventing nonproductive decoding attempts and hence forms a basis for effective selenoprotein synthesis.  相似文献   
17.
One major aspect of research in forensic entomology is the investigation of molecular techniques for the accurate identification of insects. Studies to date have addressed the corpse fauna of many geographical regions, but generally neglected the southern African calliphorid species. In this study, forensically significant calliphorids from South Africa, Swaziland, Botswana and Zimbabwe and Australia were sequenced over an 1167 base pair region of the COI gene. Phylogenetic analysis was performed to examine the ability of the region to resolve species identities and taxonomic relationships between species. Analyses by neighbour-joining, maximum parsimony and maximum likelihood methods all showed the potential of this region to provide the necessary species-level identifications for application to post-mortem interval (PMI) estimation; however, higher level taxonomic relationships did vary according to method of analysis. Intraspecific variation was also considered in relation to determining suitable maximum levels of variation to be expected during analysis. Individuals of some species in the study represented populations from both South Africa and the east coast of Australia, yet maximum intraspecific variation over this gene region was calculated at 0.8%, with minimum interspecific variation at 3%, indicating distinct ranges of variation to be expected at intra- and interspecific levels. This region therefore appears to provide southern African forensic entomologists with a new technique for providing accurate identification for application to estimation of PMI.  相似文献   
18.
BACKGROUND: The NOGA (Biosense Webster, Markham, ON, Canada) injection catheter is an innovative navigational device that provides an ideal platform for intra-myocardial injection material. However, injection through a long (1.91 m), narrow (27G) nitinol needle could result in deterioration in the integrity and functionality of DNA. METHODS: To test this possibility, DNA in plasmid form (pcDNA3.1) containing the Lac Z transgene (250 micro l) was passed through the NOGA needle using a hand-held 1 cc syringe at a gentle hand injection pressure (43 +/- 3 PSI, 3.0 +/- 0.2 kg/cm(2)) or at maximal manual pressure (90 +/- 6 PSI, 6.3 +/- 0.4 kg/cm(2)), either once or 20 times. This DNA, compared to DNA not passed through the NOGA needle (control), was then used to transfect primary cultures of rat skin fibroblasts (FB) from Fisher 344 rats and the cells were subsequently stained for beta galactosidase (betagal). RESULTS: Transfection efficiency was significantly reduced by passing the DNA through the needle at both 43 +/- 3 PSI (78 +/- 4% of control, n = 10, P < 0.05 versus control) and 90 +/- 6 PSI (66 +/- 4 % of control, n = 10, P < 0.01 versus control, P < 0.02 versus 43 +/- 3 PSI). Passage of the DNA through the NOGA needle 20 times resulted in a transfection efficiency of only 5 +/- 1% of control (n = 20, P < 0.1 x 10(-11) versus control). Capillary Electrophoresis revealed that the reduction in transfection efficiency was due to a conformational change in the DNA from predominantly supercoiled to nicked and linearized DNA. Transfection efficiency as compared with control decreased as the concentration of the DNA solution which was passed through the needle was increased from 0.3 micro g/ micro l to 2.4 micro g/ micro l. Recovery experiments confirmed that the reduction in transfection efficiency was not due to loss of DNA by binding to the NOGA needle. CONCLUSION: These results suggest that DNA is susceptible to shear forces when injected through the NOGA needle even at nominal clinical injection pressures, suggesting that careful and controlled injections will be required to achieve optimal gene integrity and expression.  相似文献   
19.
Phylogenetic relationships were determined for 76 partial P-element sequences from 14 species of the melanogaster species group within the Drosophila subgenus Sophophora. These results are examined in the context of the phylogeny of the species from which the sequences were isolated. Sequences from the P-element family fall into distinct subfamilies, or clades, which are often characteristic for particular species subgroups. When examined locally among closely related species, the evolution of P elements is characterized by vertical transmission, whereby the P-element phylogeny traces the species phylogeny. On a broader scale, however, the P-element phylogeny is not congruent with the species phylogeny. One feature of P-element evolution in the melanogaster group is the presence of more than one P-element subfamily, differing by as much as 36%, in the genomes of some species. Thus, P elements from several individual species are not monophyletic, and a likely explanation for the incongruence between P-element and species phylogenies is provided by the comparison of paralogous sequences. In certain instances, horizontal transfer seems to be a valid alternative explanation for lack of congruence between species and P-element phylogenies. The canonical P-element subfamily, which represents the active, autonomous transposable element, is restricted to D. melanogaster. Thus, its origin clearly lies outside of the melanogaster species group, consistent with the earlier conclusion of recent horizontal transfer.   相似文献   
20.
Titanium (Ti) is a widely used material for surgical implants; total joint replacements (TJRs), screws and plates for fixing bones and dental implants are forged from Ti. Whilst Ti integrates well into host tissue approximately 10% of TJRs will fail in the lifetime of the patient through a process known as aseptic loosening. These failures necessitate revision arthroplasties which are more complicated and costly than the initial procedure. Finding ways of enhancing early (osseo)integration of TJRs is therefore highly desirable and continues to represent a research priority in current biomaterial design. One way of realising improvements in implant quality is to coat the Ti surface with small biological agents known to support human osteoblast formation and maturation at Ti surfaces. Lysophosphatidic acid (LPA) and certain LPA analogues offer potential solutions as Ti coatings in reducing aseptic loosening. Herein we present evidence for the successful bio-functionalisation of Ti using LPA. This modified Ti surface heightened the maturation of human osteoblasts, as supported by increased expression of alkaline phosphatase. These functionalised surfaces also deterred the attachment and growth of Staphylococcus aureus, a bacterium often associated with implant failures through sepsis. Collectively we provide evidence for the fabrication of a dual-action Ti surface finish, a highly desirable feature towards the development of next-generation implantable devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号