首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   8篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   7篇
  2014年   4篇
  2013年   6篇
  2012年   2篇
  2011年   3篇
  2010年   7篇
  2009年   1篇
  2008年   4篇
  2007年   7篇
  2006年   5篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1980年   2篇
  1976年   1篇
排序方式: 共有87条查询结果,搜索用时 15 毫秒
31.
The ether phospholipid platelet-activating factor and certain similar phospholipids, including lysophosphatidylcholine, are known to stimulate both H+ transport and protein phosphorylation in plant microsomal membranes. In the present work, several polypeptides in highly purified tonoplast membranes from zucchini (Cucurbita pepo L.) showed platelet-activating factor-dependent phosphorylation. Comparison of protein phosphorylation in different membrane fractions separated by sucrose step density gradient centrifugation indicated that some of the phosphoproteins were contaminants or were common to several membrane fractions, but platelet-activating factor-dependent phosphorylation of peptides at 30, 53, and perhaps 100 kilodaltons was tonoplast specific. The phosphoprotein of 53 kilodaltons was shown by three different approaches (one- and two-dimensional polyacrylamide gel electrophoresis, western blots, and immunoprecipitation) to cross-react with antibody raised against the B subunit of the tonoplast ATPase from red beet (Beta vulgaris L.).  相似文献   
32.
Intracellular collagen degradation by fibroblasts is an important but poorly understood pathway for the physiological remodeling of mature connective tissues. The objective of this study was to determine whether gingival fibroblasts that express endogenous alpha(2)beta(1) integrin, the collagen receptor, would exhibit the cellular machinery required for phagosomal maturation and collagen degradation. There was a time-dependent increase of collagen bead internalization and a time-dependent decrease of bead-associated alpha(2)beta(1) integrin after initial bead binding. beta-Actin and gelsolin associated transiently with beads (0-30 min) followed by LAMP-2 (60-240 min) and cathepsin B (30-240 min). Cytochalasin D prevented phagosome formation and also prevented the sequential fusion of early endosomes with lysosomes. Collagen bead-associated pH was progressively reduced from 7.25 to 5.4, which was contemporaneous with progressive increases in degradation of bead-associated collagen (30-120 min). Concanamycin blocked acidification of phagolysosomes and collagen degradation but not phagosome maturation. Phagosomal acidification was partly dependent on elevated intracellular calcium. These studies demonstrate that the cellular machinery required for intracellular collagen degradation in fibroblasts closely resembles the vacuolar system in macrophages.  相似文献   
33.
The anterior cingulate cortex (ACC) plays an important role in higher brain functions including learning, memory, and persistent pain. Long-term potentiation of excitatory synaptic transmission has been observed in the ACC after digit amputation, which might contribute to plastic changes associated with the phantom pain. Here we report a long-lasting membrane potential depolarization in ACC neurons of adult rats after digit amputation in vivo. Shortly after digit amputation of the hind paw, the membrane potential of intracellularly recorded ACC neurons quickly depolarized from ~-70 mV to ~-15 mV and then slowly repolarized. The duration of this amputation-induced depolarization was about 40 min. Intracellular staining revealed that these neurons were pyramidal neurons in the ACC. The depolarization is activity-dependent, since peripheral application of lidocaine significantly reduced it. Furthermore, the depolarization was significantly reduced by a NMDA receptor antagonist MK-801. Our results provide direct in vivo electrophysiological evidence that ACC pyramidal cells undergo rapid and prolonged depolarization after digit amputation, and the amputation-induced depolarization in ACC neurons might be associated with the synaptic mechanisms for phantom pain.  相似文献   
34.
Recently, a novel mode of sulphur oxidation was described in marine sediments, in which sulphide oxidation in deeper anoxic layers was electrically coupled to oxygen reduction at the sediment surface. Subsequent experimental evidence identified that long filamentous bacteria belonging to the family Desulfobulbaceae likely mediated the electron transport across the centimetre-scale distances. Such long-range electron transfer challenges some long-held views in microbial ecology and could have profound implications for sulphur cycling in marine sediments. But, so far, this process of electrogenic sulphur oxidation has been documented only in laboratory experiments and so its imprint on the seafloor remains unknown. Here we show that the geochemical signature of electrogenic sulphur oxidation occurs in a variety of coastal sediment environments, including a salt marsh, a seasonally hypoxic basin, and a subtidal coastal mud plain. In all cases, electrogenic sulphur oxidation was detected together with an abundance of Desulfobulbaceae filaments. Complementary laboratory experiments in intertidal sands demonstrated that mechanical disturbance by bioturbating fauna destroys the electrogenic sulphur oxidation signal. A survey of published geochemical data and 16S rRNA gene sequences identified that electrogenic sulphide oxidation is likely present in a variety of marine sediments with high sulphide generation and restricted bioturbation, such as mangrove swamps, aquaculture areas, seasonally hypoxic basins, cold sulphide seeps and possibly hydrothermal vent environments. This study shows for the first time that electrogenic sulphur oxidation occurs in a wide range of marine sediments and that bioturbation may exert a dominant control on its natural distribution.  相似文献   
35.

Background  

G protein-coupled receptors constitute the largest family of cell surface receptors in the mammalian genome. As the core of the G protein signal transduction machinery, the Gα subunits are required to interact with multiple partners. The GTP-bound active state of many Gα subunits can bind a multitude of effectors and regulatory proteins. Yet it remains unclear if the different proteins utilize distinct or common structural motifs on the Gα subunit for binding. Using Gα16 as a model, we asked if its recently discovered adaptor protein tetratricopeptide repeat 1 (TPR1) binds to the same region as its canonical effector, phospholipase Cβ (PLCβ).  相似文献   
36.
Large osteoclasts (>or=10 nuclei) predominate at sites of pathological bone resorption. We hypothesized this was related to increased resorptive activity of large osteoclasts and have demonstrated previously that larger osteoclasts are 8-fold more likely to be resorbing than small osteoclasts (2-5 nuclei). Here we ask whether these differences in resorptive activity can be explained by differences in expression of factors involved in osteoclast signaling, fusion, attachment, and matrix degradation. Authentic rabbit osteoclasts and osteoclasts derived from RAW264.7 cells showed similar increases in c-fms expression (1.7- to 1.8-fold) in large osteoclasts suggesting that RAW cells are a viable system for further analysis. We found 2- to 4.5-fold increases in the expression of the integrins alpha(v) and beta(3), the proteases proMMP9, matMMP9 and pro-cathepsinK, and in activating receptors RANK, IL-1R1, and TNFR1 in large osteoclasts. In contrast, small osteoclasts had higher expression of the fusion protein SIRPalpha1 and the decoy receptor IL-1R2. The higher expression of activation receptors and lower expression of IL-1R2 in large osteoclasts suggest they are hyperresponsive to extracellular factors. This is supported by the observation that the resorptive activity in large osteoclasts was more responsive to IL-1beta, and that this increased activity was inhibited by the IL-1 receptor antagonist, IL-1ra. This increased responsiveness of large osteoclasts to IL-1 may, in part, explain the pathological bone loss noted in inflammatory diseases. The heterogeneity in receptor expression and the differential response to cytokines and their antagonists could prove useful for selective inhibition of large osteoclasts actively engaged in pathological bone loss.  相似文献   
37.
We here report a spontaneous case of meningoencephalitis due to Listeria monocytogenes in an adult primiparous rhesus macaque (Macaca mulatta) during an outbreak of listeriosis in an outdoor enclosure. Clinical signs included tremors, abnormal posture, and altered mental status. Hematology and analyses of cerebrospinal fluid were consistent with bacterial infection. Pure cultures of L. monocytogenes were recovered from the placenta–abortus, cerebrospinal fluid, and brain tissue. The macaque did not respond to treatment and was euthanized. Histopathologic examination of the brain revealed acute meningoencephalitis. This case represents an unusual clinical and pathologic presentation of listeriosis in a nonhuman primate in which the dam and fetus both were affected.Listeria monocytogenes is a ubiquitous, facultative anaerobic, intracellular gram-positive coccobacillus. This bacterium is found in diverse environments including (but not limited to) soil, water, plant matter, food items, and the intestinal tract of mammalian hosts.15,18 The organism is environmentally resistant, being able to survive in dried media for several months and in moist soil for up to a year.15 L. monocytogenes is the causative agent of listeriosis, a bacterial infection that has a worldwide distribution and affects a wide range of mammals and birds, including human beings.In people, L. monocytogenes is a relatively uncommon foodborne pathogen; its abilities to survive food processing and grow in cold conditions allow it to persist in appropriately stored or refrigerated foods.2 In people, listeriosis occurs both sporadically and as large outbreaks,18 generally comprising 3 separate syndromes with clinical manifestations ranging from mild to life-threatening.35 The most common form is seen in immunocompetent, nonpregnant adults as a febrile gastroenteritis.2,18,21 The other 2 forms, which occur in fetuses and immunocompromised patients, are more severe.19,21 In pregnant women, maternal listeriosis is asymptomatic or causes mild, flu-like symptoms, but the bacterium''s ability to cross the placenta and the blood–brain barrier of the fetus results in neonatal septicemia, meningitis, abortion, and stillbirth.16 In elderly and immunocompromised patients, septicemia and meningoencephalitis are life-threatening manifestations of literiosis.26 The worldwide case fatality rate varies widely among countries, sometimes exceeding 50% despite what is considered to be appropriate antibiotic therapy.18 In 2009, the Centers for Disease Control reported 524 cases of listeriosis in the United States, which were associated with a 19% resulting in death.4In ruminants, listeriosis is also known as ‘circling disease’ and ‘silage disease.’8,18,21 Foodborne infection with L. monocytogenes is well described, and many studies have shown that spoiled silage may be a source of listeria outbreaks.8,18 Rhombencephalitis and diffuse meningoencephalitis are the most recognized forms of the infection in ruminants; sporadic abortion is reported also.22 Clinical signs of listeria encephalitis in cattle, sheep, and goats are characterized by unilateral or bilateral brainstem dysfunction and cranial nerve deficits. In sheep and goats, the course of the disease is acute, but the disease in cattle has a more chronic progression, with neurologic manifestations that can last 4 to 14 d.1,22In rabbits, infection with L. monocytogenes is characterized by abortion in pregnant does or sudden death; neurologic signs are rare.1 In poultry, an acute form with septicemia and sudden death occurs in adults, in contrast to a subacute–chronic form, with encephalitis, in the young.6The literature on L. monocytogenes in nonhuman primates is sparse5,11,17,33 and more recently limited to experimental infection of pregnant animals. In pregnant rhesus macaques (Macaca mulatta), experimental infection during the last trimester of gestation can cause stillbirth with no other clinical signs.23,24 In our colony, however, infection with L. monocytogenes is endemic. Every year, several spontaneous abortions or stillbirths in our outdoor colony are caused by infection of the dam with this organism. Culture of L. monocytogenes from both the abortus–fetus and placenta are well documented. As described in the literature,23,24 the dams in our colony do not demonstrate any clinical signs prior to the abortion or stillbirth.During the winter to spring of 2011, one of our outdoor housing enclosures experienced an outbreak of listeriosis. This outside corral housed 100 rhesus macaques in a social group that included 42 reproductive females. Of these reproductive females, 37 (88%) were confirmed pregnant by abdominal palpation or ultrasonography or both. From January 2011 to May 2011, 19 (51%) stillbirths and neonatal deaths (in infants younger than 3 d) were reported in this enclosure; 13 (68%) of these tissues (placenta, 3; fetal lungs, 8; fetal peritoneum, 2) were culture-positive for L. monocytogenes. In all cases except the one presented here, the dam did not manifest any clinical signs prior to or after the delivery of a stillborn or premature birth with neonatal death.Here we describe an unusual case of listeriosis in a primiparous pregnant female rhesus macaque that manifested severe neurologic impairment and intrautero death of the fetus.  相似文献   
38.
V-ATPases are multimeric proton pumps. The 100-kDa "a" subunit is encoded by four isoforms (a1-a4) in mammals and two (Vph1p and Stv1p) in yeast. a3 is enriched in osteoclasts and is essential for bone resorption, whereas a4 is expressed in the distal nephron and acidifies urine. Mutations in human a3 and a4 result in osteopetrosis and distal renal tubular acidosis, respectively. Human a3 (G405R and R444L) and a4 (P524L and G820R) mutations were recreated in the yeast ortholog Vph1p, a3 (G424R and R462L), and a4 (W520L and G812R). Mutations in a3 resulted in wild type vacuolar acidification and growth on media containing 4 mM ZnCl2, 200 mM CaCl2, or buffered to pH 7.5 with V-ATPase hydrolytic and pumping activity decreased by 30-35%. Immunoblots confirmed wild type levels for V-ATPase a, A, and B subunits on vacuolar membranes. a4 G812R resulted in defective growth on selective media with V-ATPase hydrolytic and pumping activity decreased by 83-85% yet with wild type levels of a, A, and B subunits on vacuolar membranes. The a4 W520L mutation had defective growth on selective media with no detectable V-ATPase activity and reduced expression of a, A, and B subunits. The a4 W520L mutation phenotypes were dominant negative, as overexpression of wild type yeast a isoforms, Vph1p, or Stv1p, did not restore growth. However, deletion of endoplasmic reticulum assembly factors (Vma12p, Vma21p, and Vma22p) partially restored a and B expression. That a4 W520L affects both Vo and V1 subunits is a unique phenotype for any V-ATPase subunit mutation and supports the concerted pathway for V-ATPase assembly in vivo.  相似文献   
39.
Osteoclasts are bone‐resorbing cells formed by fusion of mononuclear precursors. The matrix proteins, fibronectin (FN), vitronectin (VN), and osteopontin (OPN) are implicated in joint destruction and interact with osteoclasts mainly through integrins. To assess the effects of these matrix proteins on osteoclast formation and activity, we used RAW 264.7 (RAW) cells and mouse splenocytes differentiated into osteoclasts on tissue culture polystyrene (TCP) or osteologic? slides pre‐coated with 0.01–20 µg/ml FN, VN, and OPN. At 96 h, osteoclast number and multinucleation were decreased on VN and FN compared to OPN and TCP in both RAW and splenocytes cell cultures. When early differentiation was assessed, VN but not FN decreased cytoplasmic tartrate‐resistant acid phosphatase activity and pre‐osteoclast number at 48 h. OPN had the opposite effect to FN on osteoclast formation. When RAW cells were differentiated on OPN and treated by FN and OPN, osteoclast number only in the FN treated group was 40–60% lower than the control, while the total number of nuclei was unchanged, suggesting that FN delays osteoclast fusion. In contrast to its inhibitory effect on osteoclastogenesis, FN increased resorption by increasing both osteoclast activity and the percentage of resorbing osteoclasts. This was accompanied by an increase in nitric oxide (NO) levels and interleukin‐1β (IL‐1β). IL‐1β production was inhibited using the NO‐synthase inhibitor only on FN indicating a FN‐specific cross‐talk between NO and IL‐1β signaling pathways. We conclude that FN upregulates osteoclast activity despite inhibiting osteoclast formation and that these effects involve NO and IL‐1β signaling. J. Cell. Biochem. 111: 1020–1034, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号