首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2373篇
  免费   136篇
  国内免费   1篇
  2510篇
  2023年   18篇
  2022年   36篇
  2021年   77篇
  2020年   39篇
  2019年   52篇
  2018年   84篇
  2017年   55篇
  2016年   80篇
  2015年   104篇
  2014年   146篇
  2013年   186篇
  2012年   178篇
  2011年   178篇
  2010年   126篇
  2009年   94篇
  2008年   115篇
  2007年   135篇
  2006年   96篇
  2005年   93篇
  2004年   66篇
  2003年   64篇
  2002年   54篇
  2001年   28篇
  2000年   27篇
  1999年   20篇
  1997年   10篇
  1996年   6篇
  1995年   13篇
  1994年   10篇
  1992年   12篇
  1991年   26篇
  1990年   17篇
  1989年   23篇
  1988年   12篇
  1987年   11篇
  1986年   9篇
  1985年   17篇
  1984年   23篇
  1983年   10篇
  1982年   17篇
  1981年   10篇
  1980年   10篇
  1979年   23篇
  1978年   11篇
  1977年   14篇
  1975年   13篇
  1974年   6篇
  1973年   10篇
  1972年   9篇
  1971年   7篇
排序方式: 共有2510条查询结果,搜索用时 0 毫秒
121.
Fruits are one of the major sources of vitamins, essential nutrients, antioxidants and fibers in human diet. During the last two–three decades, genetic engineering methods based on the use of transgenes have been successfully adopted to improve fruit plants and focused mainly on enhanced tolerance to biotic and abiotic stresses, increased fruit yield, improved post harvest shelf life of fruit, reduced generation time and production of fruit with higher nutritional value. However, the development of transgenic fruit plants and their commercialization are hindered by many regulatory and social hurdles. Nowadays, new genetic engineering approaches i.e. cisgenesis or intragenesis receive increasing interest for genetic modification of plants. The absence of selectable marker gene in the final product and the introduced gene(s) derived from the same plant or plants sexually compatible with the target crop should increase consumer’s acceptance. In this article, we attempt to summarize the recent progress achieved on the genetic engineering in fruit plants and their applications in crop improvement. Challenges and opportunities for the deployment of genetic engineering in crop improvement programs of fruit plants are also discussed.  相似文献   
122.
Dysfunction of the apoptotic pathway in prostate cancer cells confers apoptosis resistance towards various therapies. A novel strategy to overcome resistance is to directly target the apoptotic pathway in cancer cells. Apigenin, an anticancer agent, selectively toxic to cancer cells induces cell cycle arrest and apoptosis through mechanisms which are not fully explored. In the present study we provide novel insight into the mechanisms of apoptosis induction by apigenin. Treatment of androgen-refractory human prostate cancer PC-3 and DU145 cells with apigenin resulted in dose-dependent suppression of XIAP, c-IAP1, c-IAP2 and survivin protein levels. Apigenin treatment resulted in significant decrease in cell viability and apoptosis induction with the increase of cytochrome C in time-dependent manner. These effects of apigenin were accompanied by decrease in Bcl-xL and Bcl-2 and increase in the active form of Bax protein. The apigenin-mediated increase in Bax was due to dissociation of Bax from Ku70 which is essential for apoptotic activity of Bax. Apigenin treatment resulted in the inhibition of class I histone deacetylases and HDAC1 protein expression, thereby increasing the acetylation of Ku70 and the dissociation of Bax resulting in apoptosis of cancer cells. Furthermore, apigenin significantly reduced HDAC1 occupancy at the XIAP promoter, suggesting that histone deacetylation might be critical for XIAP downregulation. These results suggest that apigenin targets inhibitor of apoptosis proteins and Ku70–Bax interaction in the induction of apoptosis in prostate cancer cells and in athymic nude mouse xenograft model endorsing its in vivo efficacy.  相似文献   
123.
A variety of 1,3‐dihydro‐2H‐1,4‐benzodiazepin‐2‐one azomethines and 1,3‐dihydro‐2H‐1,4‐benzodiazepin‐2‐one benzamide were prepared, characterized and evaluated for the anticonvulsant activity in the rat using picrotoxin‐induced seizure model. The prepared 1,3‐dihydro‐2H‐1,4‐benzodiazepin‐2‐one azomethine derivatives emerged potentially anticonvulsant molecular scaffolds exemplified by compounds, 7‐{(E)‐[(4‐nitrophenyl)methylidene]amino}‐5‐phenyl‐1,3‐dihydro‐2H‐1,4‐benzodiazepin‐2‐one, 7‐[(E)‐{[4‐(dimethylamino)phenyl]methylidene}amino]‐5‐phenyl‐1,3‐dihydro‐2H‐1,4‐benzodiazepin‐2‐one, 7‐{(E)‐[(4‐bromo‐2,6‐difluorophenyl)methylidene]amino}‐5‐phenyl‐1,3‐dihydro‐2H‐1,4‐benzodiazepin‐2‐one and 7‐[(E)‐{[3‐(4‐fluorophenyl)‐1‐phenyl‐1H‐pyrazol‐4‐yl]methylidene}amino]‐5‐phenyl‐1,3‐dihydro‐2H‐1,4‐benzodiazepin‐2‐one. All these four compounds have shown substantial decrease in the wet dog shake numbers and grade of convulsions with respect to the standard drug diazepam. The most active compound, 7‐[(E)‐{[4‐(dimethylamino)phenyl]methylidene}amino]‐5‐phenyl‐1,3‐dihydro‐2H‐1,4‐benzodiazepin‐2‐one, exhibited 74 % protection against convulsion which was higher than the standard drug diazepam. Furthermore, to identify the binding mode of the interaction amongst the target analogs and binding site of the benzodiazepine receptor, molecular docking study and molecular dynamic simulation were carried out. Additionally, in silico pharmacokinetic and toxicity predictions of target compounds were carried out using AdmetSAR tool. Results of ADMET studies suggest that the pharmacokinetic parameters of all the target compounds were within the acceptable range to become a potential drug candidate as antiepileptic agents.  相似文献   
124.
Rigosertib is a novel anticancer drug in clinical development by Onconova therapeutics, Inc. Currently, it is in pivotal phase III clinical trials for myelodysplastic syndrome (MDS) patients. Chemically, it is a sodium salt of weak acid with low solubility in lower pH solutions. In the preliminary studies, it was found that rigosertib is unstable in acidic conditions and forms multiple degradation products. In this research, drug degradation kinetics of rigosertib were studied in acidic conditions. Rigosertib follows pseudo-first-order general acid catalysis reaction. Cholestyramine, which is a strong anion exchange resin, was used to form complex with drug to improve stability and dissolution in acidic conditions. Drug complex with cholestyramine showed better dissolution profile compared to drug alone. Effect of polyethylene glycol was investigated on the release of drug from the drug resin complex. Polyethylene glycol further improved dissolution profile by improving drug solubility in acidic medium.  相似文献   
125.
Plant viruses often harm their hosts, which have developed mechanisms to prevent or minimize the effects of virus infection. Resistance and tolerance are the two main plant defences to pathogens. Although resistance to plant viruses has been studied extensively, tolerance has received much less attention. Theory predicts that tolerance to low‐virulent parasites would be achieved through resource reallocation from growth to reproduction, whereas tolerance to high‐virulent parasites would be attained through shortening of the pre‐reproductive period. We have shown previously that the tolerance of Arabidopsis thaliana to Cucumber mosaic virus (CMV), a relatively low‐virulent virus in this host, accords to these predictions. However, whether other viruses trigger the same response, and how A. thaliana copes with highly virulent virus infections remains unexplored. To address these questions, we challenged six A. thaliana wild genotypes with five viruses with different genomic structures, life histories and transmission modes. In these plants, we quantified virus multiplication, virulence, and the effects of infection on plant growth and reproduction, and on the developmental schedule. Our results indicate that virus multiplication varies according to the virus × host genotype interaction. Conversely, effective tolerance is observed only on CMV infection, and is associated with resource reallocation from growth to reproduction. Tolerance to the other viruses is observed only in specific host–virus combinations and, at odds with theoretical predictions, is linked to longer pre‐reproductive periods. These findings only partially agree with theoretical predictions, and contribute to a better understanding of pathogenic processes in plant–virus interactions.  相似文献   
126.
A system for targeted gene tagging and local saturation mutagenesis based on maize transposable elements (Ac/Ds) was developed in barley (Hordeum vulgare L.). We generated large numbers of transgenic barley lines carrying a single copy of the non-autonomous maize Ds element at defined positions in the genome. Independent Ds lines were either generated by activating Ds elements in existing single-copy lines after crossing with AcTPase-expressing plants or by Agrobacterium-mediated transformation. Genomic DNA flanking Ds and T-DNA insertion sites from over 200 independent lines was isolated and sequenced, and was used for a sequence based mapping strategy in a barley reference population. More than 100 independent Ds insertion sites were mapped and can be used as launch pads for future targeted tagging of genes in the vicinity of the insertion sites. Sequence analysis of Ds and T-DNA flanking regions revealed a sevenfold preference of both mutagens for insertion into non-redundant, gene-containing regions of the barley genome. However, whilst transposed Ds elements preferentially inserted adjacent to regions with a high number of predicted and experimentally validated matrix attachment regions (nuclear MARs), this was not the case for T-DNA integration sites. These findings and an observed high transposition frequency from mapped launch pads demonstrate the future potential of gene tagging for functional genomics and gene discovery in barley.  相似文献   
127.
The present study was conducted to assess the genetic diversity, population structure, and relatedness in Indian red jungle fowl (RJF, Gallus gallus murgi) from northern India and three domestic chicken populations (gallus gallus domesticus), maintained at the institute farms, namely White Leghorn (WL), Aseel (AS) and Red Cornish (RC) using 25 microsatellite markers. All the markers were polymorphic, the number of alleles at each locus ranged from five (MCW0111) to forty-three (LEI0212) with an average number of 19 alleles per locus. Across all loci, the mean expected heterozygosity and polymorphic information content were 0.883 and 0.872, respectively. Population-specific alleles were found in each population. A UPGMA dendrogram based on shared allele distances clearly revealed two major clusters among the four populations; cluster I had genotypes from RJF and WL whereas cluster II had AS and RC genotypes. Furthermore, the estimation of population structure was performed to understand how genetic variation is partitioned within and among populations. The maximum ?K value was observed for K = 4 with four identified clusters. Furthermore, factorial analysis clearly showed four clustering; each cluster represented the four types of population used in the study. These results clearly, demonstrate the potential of microsatellite markers in elucidating the genetic diversity, relationships, and population structure analysis in RJF and domestic chicken populations.  相似文献   
128.
In agro-ecosystem, plant pathogens hamper food quality, crop yield, and global food security. Manipulation of naturally occurring defense mechanisms in host plants is an effective and sustainable approach for plant disease management. Various natural compounds, ranging from cell wall components to metabolic enzymes have been reported to protect plants from infection by pathogens and hence provide specific resistance to hosts against pathogens, termed as induced resistance. It involves various biochemical components, that play an important role in molecular and cellular signaling events occurring either before (elicitation) or after pathogen infection. The induction of reactive oxygen species, activation of defensive machinery of plants comprising of enzymatic and non-enzymatic antioxidative components, secondary metabolites, pathogenesis-related protein expression (e.g. chitinases and glucanases), phytoalexin production, modification in cell wall composition, melatonin production, carotenoids accumulation, and altered activity of polyamines are major induced changes in host plants during pathogen infection. Hence, the altered concentration of biochemical components in host plants restricts disease development. Such biochemical or metabolic markers can be harnessed for the development of “pathogen-proof” plants. Effective utilization of the key metabolites-based metabolic markers can pave the path for candidate gene identification. This present review discusses the valuable information for understanding the biochemical response mechanism of plants to cope with pathogens and genomics-metabolomics-based sustainable development of pathogen proof cultivars along with knowledge gaps and future perspectives to enhance sustainable agricultural production.  相似文献   
129.
The neuronal cytoskeleton is tightly regulated by phosphorylation and dephosphorylation reactions mediated by numerous associated kinases, phosphatases and their regulators. Defects in the relative kinase and phosphatase activities and/or deregulation of compartment-specific phosphorylation result in neurodegenerative disorders. The largest family of cytoskeletal proteins in mammalian cells is the superfamily of intermediate filaments (IFs). The neurofilament (NF) proteins are the major IFs. Aggregated forms of hyperphosphorylated tau and phosphorylated NFs are found in pathological cell body accumulations in the central nervous system of patients suffering from Alzheimer’s disease, Parkinson’s disease, and Amyotrophic Lateral Sclerosis. The precise mechanisms for this compartment-specific phosphorylation of cytoskeletal proteins are not completely understood. In this review, we focus on the mechanisms of neurofilament phosphorylation in normal physiology and neurodegenerative diseases. We also address the recent breakthroughs in our understanding the role of different kinases and phosphatases involved in regulating the phosphorylation status of the NFs. In addition, special emphasis has been given to describe the role of phosphatases and Pin1 in phosphorylation of NFs.  相似文献   
130.
Embryogenesis in cotton is a difficult task due its genome dependency. We used 3 cotton cultivars (Khandwa-2, G. Cot. 10, and BC-68–2) and Coker-312 as control for regeneration. Efficient somatic embryogenesis was induced in agronomically important Indian cotton cultivars, Khandwa-2 and G. Cot. 10. For callusing in all the cultivars, different media combinations were tried. Embryogenesis was initiated on a hormone-free MS medium (MSB). For embryo maturation and recovery excess of L-glutamine and l-asparagine were used. Khandwa-2 somatic embryos were successfully regenerated into plants. However, no plantlet was obtained in case of G. Cot. 10. Callus induction was also observed in BC-68–2 but there was no embryogenesis observed. The study indicated that the medium and genotype significantly effects embryogenesis. An efficient protocol is described here for regenerating plants via somatic embryogenesis in an elite Indian cotton cultivar Khandwa-2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号