首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2374篇
  免费   135篇
  国内免费   1篇
  2023年   18篇
  2022年   36篇
  2021年   77篇
  2020年   39篇
  2019年   52篇
  2018年   84篇
  2017年   55篇
  2016年   80篇
  2015年   104篇
  2014年   146篇
  2013年   186篇
  2012年   178篇
  2011年   178篇
  2010年   126篇
  2009年   94篇
  2008年   115篇
  2007年   135篇
  2006年   96篇
  2005年   93篇
  2004年   66篇
  2003年   64篇
  2002年   54篇
  2001年   28篇
  2000年   27篇
  1999年   20篇
  1997年   10篇
  1996年   6篇
  1995年   13篇
  1994年   10篇
  1992年   12篇
  1991年   26篇
  1990年   17篇
  1989年   23篇
  1988年   12篇
  1987年   11篇
  1986年   9篇
  1985年   17篇
  1984年   23篇
  1983年   10篇
  1982年   17篇
  1981年   10篇
  1980年   10篇
  1979年   23篇
  1978年   11篇
  1977年   14篇
  1975年   13篇
  1974年   6篇
  1973年   10篇
  1972年   9篇
  1971年   7篇
排序方式: 共有2510条查询结果,搜索用时 15 毫秒
101.
Probiotics and Antimicrobial Proteins - Giardiasis is a re-emerging infectious disease with outbreaks reported globally specially in children and malnourished individuals leading to malabsorption,...  相似文献   
102.
The prognostic signatures play an essential role in the era of personalised therapy for cancer patients including lung adenocarcinoma (LUAD). Long noncoding RNA (LncRNA), a relatively novel class of RNA, has shown to play a crucial role in all the areas of cancer biology. Here, we developed and validated a robust LncRNA-based prognostic signature for LUAD patients using three different cohorts. In the discovery cohort, four LncRNAs were identified with 10% false discovery rate and a hazard ratio of >10 using univariate Cox regression analysis. A risk score, generated from the four LncRNAs’ expression, was found to be a significant predictor of survival in the discovery and validation cohort (p = 9.97 × 10 −8 and 1.41 × 10 −3, respectively). Further optimisation of four LncRNAs signature in the validation cohort, generated a three LncRNAs prognostic score (LPS), which was found to be an independent predictor of survival in both the cohorts ( p = 1.00 × 10 −6 and 7.27 × 10 −4, respectively). The LPS also significantly divided survival in clinically important subsets, including Stage I ( p = 9.00 × 10 −4 and 4.40 × 10 −2, respectively), KRAS wild-type (WT), KRAS mutant ( p = 4.00 × 10 −3 and 4.30 × 10 −2, respectively) and EGFR WT ( p = 2.00 × 10 −4). In multivariate analysis LPS outperformed, eight previous prognosticators. Further, individual members of LPS showed a significant correlation with survival in microarray data sets. Mutation analysis showed that high-LPS patients have a higher mutation rate and inactivation of the TP53 pathway. In summary, we identified and validated a novel LncRNA signature LPS for LUAD.  相似文献   
103.
Molecular Biology Reports - Mulberry (Morus alba L.) is the sole food source for the mulberry silkworm, Bombyx mori and therefore important for sericulture industry. Different abiotic stress...  相似文献   
104.
Length–weight relationships (LWRs) were estimated for nine freshwater fish species collected three times using a scoop net (mesh size 0.3–0.5 cm), cast net (mesh size 1–1.5 cm) and gillnet (mesh size 2.5–4.5 cm) from six rivers of the Western Ghats of India during August 2017–October 2018. The b values for LWRs varied from 2.862 to 3.656 (R2 > 0.916 and p < 0.0001 for all species).  相似文献   
105.
Plant Molecular Biology Reporter - The original version of this article unfortunately contained missing information at author’s affiliations. The affiliation address of the author’s...  相似文献   
106.
107.
Brown plant hopper (BPH) is one of the major destructive insect pests of rice, causing severe yield loss. Thirty-two BPH resistance genes have been identified in cultivated and wild species of rice Although, molecular mechanism of rice plant resistance against BPH studied through map-based cloning, due to non-existence of NMR/crystal structures of Bph14 protein, recognition of leucine-rich repeat (LRR) domain and its interaction with different ligands are poorly understood. Thus, in the present study, in silico approach was adopted to predict three-dimensional structure of LRR domain of Bph14 using comparative modelling approach followed by interaction study with jasmonic and salicylic acids. LRR domain along with LRR-jasmonic and salicylic acid complexes were subjected to dynamic simulation using GROMACS, individually, for energy minimisation and refinement of the structure. Final binding energy of jasmonic and salicylic acid with LRR domain was calculated using MM/PBSA. Free-energy landscape analysis revealed that overall stability of LRR domain of Bph14 is not much affected after forming complex with jasmonic and salicylic acid. MM/PBSA analysis revealed that binding affinities of LRR domain towards salicylic acid is higher as compared to jasmonic acid. Interaction study of LRR domain with salicylic acid and jasmonic acid reveals that THR987 of LRR form hydrogen bond with both complexes. Thus, THR987 plays active role in the Bph14 and phytochemical interaction for inducing resistance in rice plant against BPH. In future, Bph14 gene and phytochemicals could be used in BPH management and development of novel resistant varieties for increasing rice yield.  相似文献   
108.

Iron deficiency anaemia is a major challenge among consumers in developing countries. Given the deficiency of iron in the diet, there is an urgent need to devise a strategy for providing the required iron in the daily diet to counter the iron deficiency anaemia. We propose that iron biofortification of wheat (Triticum aestivum L.) through seed priming would be an innovative strategy to address this issue. This investigation attempts to find the interaction of iron oxide nanoparticles on germination, growth parameters and accumulation of grain iron in two contrasting wheat genotypes WL711 (low-iron genotype) and IITR26 (high-iron genotype). Wheat seeds were primed with different concentrations of iron oxide nanoparticles in the range of 25–600 ppm, resulting in differential accumulation of grain iron contents. We observed a pronounced increase in germination percentage and shoot length at 400 and 200 ppm treatment concentrations in IITR26 and WL711 genotypes, respectively. Intriguingly, the treatment concentration of 25 ppm demonstrated higher accumulation with a significant increase in grain iron contents to 45.7% in IITR26 and 26.8% in WL711 genotypes, respectively. Seed priming represents an innovative and user-friendly approach for wheat biofortification which triggers iron acquisition and accumulation in grains.

  相似文献   
109.

We evaluated the effect of different watering regimes on the growth, chlorophyll fluorescence, phytohormones, and phenolic acids in Ceratotheca triloba (Bernh.) Hook.f., a commonly consumed African indigenous leafy vegetable. The study was conducted in the greenhouse under different watering regimes [seven (daily); three (thrice); two (twice); one (once) day(s) per week] for a period of 2 and 4-months. In each pot (7.5 cm diameter; 150 ml volume), 50 ml of water was applied per treatment. At the end of the experiment, plant growth, chlorophyll fluorescence, phytohormones, and phenolic acids were determined. A decrease in water availability resulted in a consistent decline in plant growth after a 4-month growth period. The severity of reduced water availability was more noticeable in plants watered once a week with a 1.4-fold reduction in growth and quantum efficiency of PSII (Fv/Fm) value of 0.80. The significant decline in growth and chlorophyll fluorescence was probably due to the increased production of abscisic acid (ABA) and cytokinin (CK) content together with the detected phytohormones in plants with restricted water supply. Furthermore, plants watered once a week had a trade-off between growth and phenolic acid production, with significantly higher (threefolds) concentrations of vanillic, ferulic, caffeic, and 4-coumaric acids in 4-month-old plants. Even though C. triloba grew best in well-watered soil, the plant had the potential to adapt and survive in soils with limited water supply for longer periods of growth. These findings suggest that regulation of phytohormones and phenolic acids played an important role in improving the growth of C. triloba under limited water conditions.

  相似文献   
110.

Soil salinity is a major limiting factor for crop productivity worldwide and is continuously increasing owing to climate change. A wide range of studies and practices have been performed to induce salt tolerance mechanisms in plants, but their result in crop improvement has been limited due to lack of time and money. In the current scenario, there is increasing attention towards habitat-imposed plant stress tolerance driven by plant-associated microbes, either rhizospheric and/or endophytic. These microbes play a key role in protecting plants against various environmental stresses. Therefore, the use of plant growth-promoting microbes in agriculture is a low-cost and eco-friendly technology to enhance crop productivity in saline areas. In the present review, the authors describe the functionality of endophytic bacteria and their modes of action to enhance salinity tolerance in plants, with special reference to osmotic and ionic stress management. There is concrete evidence that endophytic bacteria serve host functions, such as improving osmolytes, anti-oxidant and phytohormonal signaling and enhancing plant nutrient uptake efficiency. More research on endophytes has enabled us to gain insights into the mechanism of colonization and their interactions with plants. With this information in mind, the authors tried to solve the following questions: (1) how do benign endophytes ameliorate salt stress in plants? (2) What type of physiological changes incur in plants under salt stress conditions? And (3), what type of determinants produced by endophytes will be helpful in plant growth promotion under salt stress?

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号