首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2376篇
  免费   143篇
  国内免费   2篇
  2023年   14篇
  2022年   28篇
  2021年   57篇
  2020年   33篇
  2019年   33篇
  2018年   55篇
  2017年   41篇
  2016年   66篇
  2015年   87篇
  2014年   105篇
  2013年   184篇
  2012年   183篇
  2011年   151篇
  2010年   121篇
  2009年   96篇
  2008年   133篇
  2007年   123篇
  2006年   107篇
  2005年   95篇
  2004年   77篇
  2003年   63篇
  2002年   66篇
  2001年   48篇
  2000年   35篇
  1999年   30篇
  1998年   14篇
  1997年   16篇
  1996年   18篇
  1995年   14篇
  1993年   13篇
  1992年   21篇
  1991年   24篇
  1990年   20篇
  1989年   34篇
  1988年   22篇
  1987年   22篇
  1986年   16篇
  1985年   30篇
  1984年   23篇
  1982年   12篇
  1981年   13篇
  1979年   15篇
  1978年   10篇
  1977年   13篇
  1976年   14篇
  1974年   14篇
  1973年   9篇
  1972年   10篇
  1971年   9篇
  1966年   11篇
排序方式: 共有2521条查询结果,搜索用时 31 毫秒
101.
Deinococcus radiodurans R1 exposed to a lethal dose of cadmium shows differential expression of a large number of genes, including frnE (drfrnE) and some of those involved in DNA repair and oxidative stress tolerance. The drfrnE::nptII mutant of D. radiodurans showed growth similar to that of the wild type, but its tolerance to 10 mM cadmium and 10 mM diamide decreased by ∼15- and ∼3-fold, respectively. These cells also showed nearly 6 times less resistance to gamma radiation at 12 kGy and ∼2-fold-higher sensitivity to 40 mM hydrogen peroxide than the wild type. In trans expression of drFrnE increased cytotoxicity of dithiothreitol (DTT) in the dsbA mutant of Escherichia coli. Recombinant drFrnE showed disulfide isomerase activity and could maintain insulin in its reduced form in the presence of DTT. While an equimolar ratio of wild-type protein could protect malate dehydrogenase completely from thermal denaturation at 42°C, the C22S mutant of drFrnE provided reduced protection to malate dehydrogenase from thermal inactivation. These results suggested that drFrnE is a protein disulfide isomerase in vitro and has a role in oxidative stress tolerance of D. radiodurans possibly by protecting the damaged cellular proteins from inactivation.  相似文献   
102.
The incidence of salinity-induced plant stress as a result of natural and anthropogenic factors in arid and semi-arid agricultural lands is great. In South Africa alone, 9 % of irrigated agricultural land is salt-affected. Commercial fertilizers used for improving soil nutrient levels are costly and affect the quality, lifespan and sustainability of soil and water resources. Organic farming practices are based on cost-effective and environmentally-aware management systems. Vermicompost leachate (VCL) is a vermicompost-derived liquid product that has become recognised as a suitable soil amendment product. Commercial tomato (Lycopersicon esculentum Mill var. Heinz-1370) seedlings were subjected to sodium chloride (NaCl) concentrations of 0, 25, 50 and 100 mM and were treated with 1:10 (v/v) WizzardWorms VCL prepared in Hoagland’s nutrient solution under greenhouse conditions. Morphological characters of VCL-treated tomato seedlings showed improved root growth and stimulated overall aboveground growth with significantly higher numbers of leaves, greater stem thickness and increased leaf area, even at a high NaCl-tested concentration (100 mM). The accumulation of compatible solutes such as proline and total soluble sugars indicate an induced salt tolerance or adaptive mechanism in VCL-treated tomato seedlings. The current investigation demonstrates the potential of an organic liquid to maximise tomato productivity by improving seedling growth performance under salt stress conditions.  相似文献   
103.
Bacillus anthracis Ser/Thr protein kinase PrkC (BasPrkC) is important for virulence of the bacterium within the host. Homologs of PrkC and its cognate phosphatase PrpC (BasPrpC) are the most conserved mediators of signaling events in diverse bacteria. BasPrkC homolog in Bacillus subtilis regulates critical processes like spore germination and BasPrpC modulates the activity of BasPrkC by dephosphorylation. So far, biochemical and genetic studies have provided important insights into the roles of BasPrkC and BasPrpC; however, regulation of their activities is not known. We studied the regulation of BasPrkC/BasPrpC pair and observed that Zn2+ metal ions can alter their activities. Zn2+ promotes BasPrkC kinase activity while inhibits the BasPrpC phosphatase activity. Concentration of Zn2+ in growing B. anthracis cells was found to vary with growth phase. Zn2+ was found to be lowest in log phase cells while it was highest in spores. This variation in Zn2+ concentration is significant for understanding the antagonistic activities of BasPrkC/BasPrpC pair. Our results also show that BasPrkC activity is modulated by temperature changes and kinase inhibitors. Additionally, we identified Elongation Factor Tu (BasEf-Tu) as a substrate of BasPrkC/BasPrpC pair and assessed the impact of their regulation on BasEf-Tu phosphorylation. Based on these results, we propose Zn2+ as an important regulator of BasPrkC/BasPrpC mediated phosphorylation cascades. Thus, this study reveals additional means by which BasPrkC can be activated leading to autophosphorylation and substrate phosphorylation.  相似文献   
104.
Peptidase N (PepN), the sole M1 family member in Escherichia coli, displays broad substrate specificity and modulates stress responses: it lowers resistance to sodium salicylate (NaSal)-induced stress but is required during nutritional downshift and high temperature (NDHT) stress. The expression of PepN does not significantly change during different growth phases in LB or NaSal-induced stress; however, PepN amounts are lower during NDHT stress. To gain mechanistic insights on the roles of catalytic activity of PepN in modulating these two stress responses, alanine mutants of PepN replacing E264 (GAMEN motif) and E298 (HEXXH motif) were generated. There are no major structural changes between purified wild type (WT) and mutant proteins, which are catalytically inactive. Importantly, growth profiles of ΔpepN upon expression of WT or mutant proteins demonstrated the importance of catalytic activity during NDHT but not NaSal-induced stress. Further fluorescamine reactivity studies demonstrated that the catalytic activity of PepN is required to generate higher intracellular amounts of free N-terminal amino acids; consequently, the lower growth of ΔpepN during NDHT stress increases with high amounts of casamino acids. Together, this study sheds insights on the expression and functional roles of the catalytic activity of PepN during adaptation to NDHT stress.  相似文献   
105.
A significant increase in adrenal weight, total lipids, cholesterol phospholipids and glycerides (mono-and triglycerides) was observed in rats fed millet at 5, 10 and 15 % protein levels respectively for a period of six weeks as compared to rats fed casein at 10 per cent level. Increases in cholesterol were in both its free and esterified fraction. Adrenal phosphatidyl etha-nolamine was increased in all millet fed rats whereas phosphatidyl choline increased in M–15 % and decreased in M–5 % groups. Other phospholipid fractions viz. monophosphatidyl inositol, lysophosphatidyl ethanolamine, sphingomyeline, phosphatidic acid and polyglycerophosphatide also showed significant alterations in rats fed millet protein as compared to control. Incorporation of acetate–l–14C into adrenal lipids was lower and that of glucose–U–14C, palmitate–l–14C and NaH232PO4 was higher than the control.  相似文献   
106.
L-Amino acid ligase catalyzes the formation of an α-peptide bond from unprotected L-amino acids in an ATP-dependent manner, and this enzyme is very useful in efficient peptide production. We performed enzyme purification to obtain a novel L-amino acid ligase from Bacillus subtilis NBRC3134, a microorganism producing peptide-antibiotic rhizocticin. Rhizocticins are dipeptide or tripeptide antibiotics and commonly possess L-arginyl-L-2-amino-5-phosphono-3-cis-pentenoic acid. The purification was carried out by detecting L-arginine hydroxamate synthesis activity, and a target enzyme was finally purified 1,280-fold with 0.8% yield. The corresponding gene was then cloned and designated rizA. rizA was 1,242 bp and coded for 413 amino acid residues. Recombinant RizA was prepared, and it was found that the recombinant RizA synthesized dipeptides whose N-terminus was L-arginine in an ATP-dependent manner. RizA had strict substrate specificity toward L-arginine as the N-terminal substrate; on the other hand, the substrate specificity at the C-terminus was relaxed.  相似文献   
107.
White-nose syndrome is devastating North American bat populations but we lack basic information on disease mechanisms. Altered blood physiology owing to epidermal invasion by the fungal pathogen Geomyces destructans (Gd) has been hypothesized as a cause of disrupted torpor patterns of affected hibernating bats, leading to mortality. Here, we present data on blood electrolyte concentration, haematology and acid–base balance of hibernating little brown bats, Myotis lucifugus, following experimental inoculation with Gd. Compared with controls, infected bats showed electrolyte depletion (i.e. lower plasma sodium), changes in haematology (i.e. increased haematocrit and decreased glucose) and disrupted acid–base balance (i.e. lower CO2 partial pressure and bicarbonate). These findings indicate hypotonic dehydration, hypovolaemia and metabolic acidosis. We propose a mechanistic model linking tissue damage to altered homeostasis and morbidity/mortality.  相似文献   
108.

Background

Sterol glycosyltrnasferases (SGT) are enzymes that glycosylate sterols which play important role in plant adaptation to stress and are medicinally important in plants like Withania somnifera. The present study aims to find the role of WsSGTL1 which is a sterol glycosyltransferase from W. somnifera, in plant’s adaptation to abiotic stress.

Methodology

The WsSGTL1 gene was transformed in Arabidopsis thaliana through Agrobacterium mediated transformation, using the binary vector pBI121, by floral dip method. The phenotypic and physiological parameters like germination, root length, shoot weight, relative electrolyte conductivity, MDA content, SOD levels, relative electrolyte leakage and chlorophyll measurements were compared between transgenic and wild type Arabidopsis plants under different abiotic stresses - salt, heat and cold. Biochemical analysis was done by HPLC-TLC and radiolabelled enzyme assay. The promoter of the WsSGTL1 gene was cloned by using Genome Walker kit (Clontech, USA) and the 3D structures were predicted by using Discovery Studio Ver. 2.5.

Results

The WsSGTL1 transgenic plants were confirmed to be single copy by Southern and homozygous by segregation analysis. As compared to WT, the transgenic plants showed better germination, salt tolerance, heat and cold tolerance. The level of the transgene WsSGTL1 was elevated in heat, cold and salt stress along with other marker genes such as HSP70, HSP90, RD29, SOS3 and LEA4-5. Biochemical analysis showed the formation of sterol glycosides and increase in enzyme activity. When the promoter of WsSGTL1 gene was cloned from W. somnifera and sequenced, it contained stress responsive elements. Bioinformatics analysis of the 3D structure of the WsSGTL1 protein showed functional similarity with sterol glycosyltransferase AtSGT of A. thaliana.

Conclusions

Transformation of WsSGTL1 gene in A. thaliana conferred abiotic stress tolerance. The promoter of the gene in W.somnifera was found to have stress responsive elements. The 3D structure showed functional similarity with sterol glycosyltransferases.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号