首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1946篇
  免费   105篇
  国内免费   1篇
  2052篇
  2023年   12篇
  2022年   28篇
  2021年   52篇
  2020年   24篇
  2019年   30篇
  2018年   56篇
  2017年   35篇
  2016年   58篇
  2015年   83篇
  2014年   113篇
  2013年   159篇
  2012年   141篇
  2011年   149篇
  2010年   109篇
  2009年   75篇
  2008年   108篇
  2007年   100篇
  2006年   79篇
  2005年   63篇
  2004年   66篇
  2003年   63篇
  2002年   37篇
  2001年   35篇
  2000年   24篇
  1999年   25篇
  1998年   11篇
  1997年   9篇
  1996年   9篇
  1995年   12篇
  1993年   5篇
  1992年   22篇
  1991年   22篇
  1990年   19篇
  1989年   23篇
  1988年   13篇
  1987年   18篇
  1986年   20篇
  1985年   19篇
  1984年   9篇
  1981年   12篇
  1980年   4篇
  1979年   5篇
  1978年   10篇
  1976年   11篇
  1975年   9篇
  1973年   4篇
  1972年   6篇
  1970年   7篇
  1969年   5篇
  1967年   5篇
排序方式: 共有2052条查询结果,搜索用时 0 毫秒
91.
Adequate utilization of services is critical to maximize the impact of counselling on infant and young child feeding (IYCF), but little is known about factors affecting utilization. Our study examined supply- and demand-side factors associated with the utilization of IYCF counselling services in Viet Nam. We used survey data from mothers with children <2y (n = 1,008) and health staff (n = 60) from the evaluation of a program that embedded IYCF counseling into the existing government health system. The frequency of never users, one-time users, repeat users, and achievers of the recommended minimum number of visits at health facilities were 45.1%, 13.0%, 28.4% and 13.5%, respectively. Poisson regression showed that demand-generation strategies, especially invitation cards, were the key factors determining one-time use (Prevalence ratio, PR 3.0, 95% CI: 2.2–4.2), repeated use (PR 3.2, 95% CI: 2.4–4.2), and achievement of minimum visits (PR 5.5, 95% CI: 3.6–8.4). Higher maternal education was associated with higher utilization both for one-time and repeated use. Being a farmer, belonging to an ethnic minority, and having a wasted child were associated with greater likelihood of achieving the minimum recommended number of visits, whereas child stunting or illness were not. Distance to health center was a barrier to repeated visits. Among supply-side factors, good counselling skills (PR: 1.3–1.8) was the most important factor associated with any service use, whereas longer employment duration and greater work pressure of health center staff were associated with lower utilization. Population attributable risk estimations showed that an additional 25% of the population would have achieved the minimum number of visits if exposed to three demand-generation strategies, and further increased to 49% if the health staff had good counseling skills and low work pressure. Our study provides evidence that demand-generation strategies are essential to increase utilization of facility-based IYCF counselling services in Viet Nam, and may be relevant for increasing and sustaining use of nutrition services in similar contexts.  相似文献   
92.
93.
Context: Asenapine maleate (ASPM) is an antipsychotic drug for the treatment of schizophrenia and bipolar disorder. Extensive metabolism makes the oral route inconvenient for ASPM.

Objective: The objective of this study is to increase ASPM bioavailability via transdermal route by improving the skin permeation using combined strategy of chemical and nano-carrier (transfersomal) based approaches.

Materials and methods: Transfersomes were prepared by the thin film hydration method using soy-phosphatidylcholine (SPC) and sodium deoxycholate (SDC). Transfersomes were characterized for particle size, polydispersity index (PDI), zeta potential (ZP), entrapment efficiency, surface morphology, and in vitro skin permeation studies. Various chemical enhancers were screened for skin permeation enhancement of ASPM. Optimized transfersomes were incorporated into a gel base containing suitable chemical enhancer for efficient transdermal delivery. In vivo pharmacokinetic study was performed in rats to assess bioavailability by transdermal route against oral administration.

Results and discussion: Optimized transfersomes with drug:SPC:SDC weight ratio of 5:75:10 were spherical with an average size of 126.0?nm, PDI of 0.232, ZP of??43.7?mV, and entrapment efficiency of 54.96%. Ethanol (20% v/v) showed greater skin permeation enhancement. The cumulative amount of ASPM permeated after 24?h (Q24) by individual effect of ethanol and transfersome, and in combination was found to be 160.0, 132.9, and 309.3?μg, respectively, indicating beneficial synergistic effect of combined approach. In vivo pharmacokinetic study revealed significant (p?Conclusion: Dual strategy of permeation enhancement was successful in increasing the transdermal permeation and bioavailability of ASPM.  相似文献   
94.
Human Dual-specificity tyrosine (Y) Regulated Kinase 1A (DYRK1A) is encoded by a dosage dependent gene whereby either trisomy or haploinsufficiency result in developmental abnormalities. However, the function and regulation of this important protein kinase are not fully understood. Here, we report proteomic analysis of DYRK1A in human cells that revealed a novel role of DYRK1A in DNA double-strand breaks (DSBs) repair, mediated in part by its interaction with the ubiquitin-binding protein RNF169 that accumulates at the DSB sites and promotes homologous recombination repair (HRR) by displacing 53BP1, a key mediator of non-homologous end joining (NHEJ). We found that overexpression of active, but not the kinase inactive DYRK1A in U-2 OS cells inhibits accumulation of 53BP1 at the DSB sites in the RNF169-dependent manner. DYRK1A phosphorylates RNF169 at two sites that influence its ability to displace 53BP1 from the DSBs. Although DYRK1A is not required for the recruitment of RNF169 to the DSB sites and 53BP1 displacement, inhibition of DYRK1A or mutation of the DYRK1A phosphorylation sites in RNF169 decreases its ability to block accumulation of 53BP1 at the DSB sites. Interestingly, CRISPR-Cas9 knockout of DYRK1A in human and mouse cells also diminished the 53BP1 DSB recruitment in a manner that did not require RNF169, suggesting that dosage of DYRK1A can influence the DNA repair processes through both RNF169-dependent and independent mechanisms. Human U-2 OS cells devoid of DYRK1A display an increased HRR efficiency and resistance to DNA damage, therefore our findings implicate DYRK1A in the DNA repair processes.  相似文献   
95.
Previous studies have shown that dinoflagellates with different plastid ancestries have distinct differences in the fatty acid compositions and regiochemistries of their chloroplast-associated galactolipids, mono- and digalactosyldiacylglycerol (MGDG and DGDG, respectively), thus reflecting plastid origin as a major factor in plastid membrane composition. Specifically, dinoflagellates with aberrant plastids (e.g. Karenia brevis, Kryptoperidinium foliaceum and Lepidodinium chlorophorum) possess certain MGDG- and DGDG-associated fatty acids which are not found in peridinin-containing dinoflagellates (the largest group of photosynthetic dinoflagellates with a red algal plastid ancestry which is thought to be an evolutionary precursor to aberrant plastids), but which are common to other algal groups. For example, hexadecatetraenoic acid (16:4(n-3)) is common to green algae and is found in the MGDG and DGDG of L. chlorophorum, which agrees with its green algal plastid ancestry, while hexadecatrienoic acid (16:3) and hexadecadienoic acid (16:2) are found in the MGDG and DGDG of K. foliaceum, which agrees with its diatom plastid ancestry. Notably, 16:4 has been found by others in the total fatty acids and galactolipids of Karenia mikimotoi, but in no other examined members of the Kareniaceae (all of which have plastids of haptophyte origin). However, these findings lack information as to the regiochemistry of 16:4. We have utilized positive-ion electrospray ionization/mass spectrometry (ESI/MS) and ESI/MS/MS to demonstrate that 16:4, which aside from L. chlorophorum is not found conclusively in the MGDG and DGDG of any other dinoflagellates examined to date irrespective of plastid ancestry, is found in K. mikimotoi as 18:5/16:4 (sn-1/sn-2 regiochemistry) MGDG and DGDG, and that its presence is not modulated (i.e. does not become more saturated) with an increase in growth temperature. Considering an aberrant pigment composition as described by others, we present a perspective where galactolipid-associated 16:4 in K. mikimotoi indicates a plastid ancestry more convoluted than for other members of the Kareniaceae.  相似文献   
96.
97.
A phospholipid flippase activity from the endoplasmic reticulum (ER) of the model organism Saccharomyces cerevisiae has been characterized and functionally reconstituted into proteoliposomes. Analysis of the transbilayer movement of acyl-7-nitrobenz-2-oxa-1,3-diazol-4-yl (acyl-NBD)-labeled phosphatidylcholine in yeast microsomes using a fluorescence stopped-flow back exchange assay revealed a rapid, ATP-independent flip-flop (half-time, <2 min). Proteoliposomes prepared from a Triton X-100 extract of yeast microsomal membranes were also capable of flipping NBD-labeled phospholipid analogues rapidly in an ATP-independent fashion. Flippase activity was sensitive to the protein modification reagents N-ethylmaleimide and diethylpyrocarbonate. Resolution of the Triton X-100 extract by velocity gradient centrifugation resulted in the identification of a approximately 4S protein fraction enriched in flippase activity as well as of other fractions where flippase activity was depleted or undetectable. We estimate that flippase activity is due to a protein(s) representing approximately 2% (wt/wt) of proteins in the Triton X-100 extract. These results indicate that specific proteins are required to facilitate ATP-independent phospholipid flip-flop in the ER and that their identification is feasible. The architecture of the ER protein translocon suggests that it could account for the flippase activity in the ER. We tested this hypothesis using microsomes prepared from a temperature-sensitive yeast mutant in which the major translocon component, Sec61p, was quantitatively depleted. We found that the protein translocon is not required for transbilayer movement of phospholipids across the ER. Our work defines yeast as a promising model system for future attempts to identify the ER phospholipid flippase and to test and purify candidate flippases.  相似文献   
98.
De novo sphingolipid synthesis is required for the exit of glycosylphosphatidylinositol (GPI)-anchored membrane proteins from the endoplasmic reticulum in yeast. Using a pharmacological approach, we test the generality of this phenomenon by analyzing the transport of GPI-anchored cargo in widely divergent eukaryotic systems represented by African trypanosomes and HeLa cells. Myriocin, which blocks the first step of sphingolipid synthesis (serine + palmitate --> 3-ketodihydrosphingosine), inhibited the growth of cultured bloodstream parasites, and growth was rescued with exogenous 3-ketodihydrosphingosine. Myriocin also blocked metabolic incorporation of [3H]serine into base-resistant sphingolipids. Biochemical analyses indicate that the radiolabeled lipids are not sphingomyelin or inositol phosphorylceramide, suggesting that bloodstream trypanosomes synthesize novel sphingolipids. Inhibition of de novo sphingolipid synthesis with myriocin had no adverse effect on either general secretory trafficking or GPI-dependent trafficking in trypanosomes, and similar results were obtained with HeLa cells. A mild effect on endocytosis was seen for bloodstream trypanosomes after prolonged incubation with myriocin. These results indicate that de novo synthesis of sphingolipids is not a general requirement for secretory trafficking in eukaryotic cells. However, in contrast to the closely related kinetoplastid Leishmania major, de novo sphingolipid synthesis is essential for the viability of bloodstream-stage African trypanosomes.  相似文献   
99.
Length–weight relationships (LWRs) were estimated for nine freshwater fish species collected three times using a scoop net (mesh size 0.3–0.5 cm), cast net (mesh size 1–1.5 cm) and gillnet (mesh size 2.5–4.5 cm) from six rivers of the Western Ghats of India during August 2017–October 2018. The b values for LWRs varied from 2.862 to 3.656 (R2 > 0.916 and p < 0.0001 for all species).  相似文献   
100.
Brown plant hopper (BPH) is one of the major destructive insect pests of rice, causing severe yield loss. Thirty-two BPH resistance genes have been identified in cultivated and wild species of rice Although, molecular mechanism of rice plant resistance against BPH studied through map-based cloning, due to non-existence of NMR/crystal structures of Bph14 protein, recognition of leucine-rich repeat (LRR) domain and its interaction with different ligands are poorly understood. Thus, in the present study, in silico approach was adopted to predict three-dimensional structure of LRR domain of Bph14 using comparative modelling approach followed by interaction study with jasmonic and salicylic acids. LRR domain along with LRR-jasmonic and salicylic acid complexes were subjected to dynamic simulation using GROMACS, individually, for energy minimisation and refinement of the structure. Final binding energy of jasmonic and salicylic acid with LRR domain was calculated using MM/PBSA. Free-energy landscape analysis revealed that overall stability of LRR domain of Bph14 is not much affected after forming complex with jasmonic and salicylic acid. MM/PBSA analysis revealed that binding affinities of LRR domain towards salicylic acid is higher as compared to jasmonic acid. Interaction study of LRR domain with salicylic acid and jasmonic acid reveals that THR987 of LRR form hydrogen bond with both complexes. Thus, THR987 plays active role in the Bph14 and phytochemical interaction for inducing resistance in rice plant against BPH. In future, Bph14 gene and phytochemicals could be used in BPH management and development of novel resistant varieties for increasing rice yield.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号