首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1130篇
  免费   53篇
  国内免费   1篇
  2024年   2篇
  2023年   11篇
  2022年   20篇
  2021年   39篇
  2020年   20篇
  2019年   21篇
  2018年   40篇
  2017年   29篇
  2016年   43篇
  2015年   57篇
  2014年   72篇
  2013年   109篇
  2012年   112篇
  2011年   106篇
  2010年   75篇
  2009年   53篇
  2008年   69篇
  2007年   67篇
  2006年   56篇
  2005年   46篇
  2004年   37篇
  2003年   34篇
  2002年   23篇
  2001年   9篇
  2000年   3篇
  1999年   6篇
  1998年   2篇
  1997年   4篇
  1996年   1篇
  1995年   4篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1984年   2篇
  1979年   1篇
  1978年   1篇
排序方式: 共有1184条查询结果,搜索用时 15 毫秒
951.
952.
953.
Chromera velia is a recently discovered, photosynthetic, marine alveolate closely related to apicomplexan parasites, and more distantly to perkinsids and dinoflagellates. To date, there are no published studies on the sterols of C. velia. Because apicomplexans and perkinsids are not known to synthesize sterols de novo, but rather obtain them from their host organisms, our objective was to examine the composition of the sterols of C. velia to assess whether or not there is any commonality with dinoflagellates as the closest taxonomic group capable of synthesizing sterols de novo. Furthermore, knowledge of the sterols of C. velia may provide insight into the sterol biosynthetic capabilities of apicomplexans prior to loss of sterol biosynthesis. We have found that C. velia possesses two primary sterols, 24-ethylcholesta-5,22E-dien-3β-ol, and 24-ethylcholest-5-en-3β-ol, not common to dinoflagellates, but rather commonly found in other classes of algae and plants. In addition, we have identified computationally three genes, SMT1 (sterol-24C-methyltransferase), FDFT1 (farnesyl diphosphate farnesyl transferase, squalene synthase), and IDI1 (isopentenyl diphosphate Δ-isomerase), predicted to be involved in sterol biosynthesis by their similarity to analogous genes in other sterol-producing eukaryotes, including a number of algae.  相似文献   
954.
955.
The significance of IL-6 production in tuberculosis is yet to be fully elucidated, although it is known for quite some time that IL-6 interferes with IFN-γ induced signal. In order to know which cellular process induced by IFN-γ is actually counteracted by IL-6, we studied the role of IL-6 on IFN-γ induced autophagy formation in virulent Mycobacterium tuberculosis infection in THP-1 cells, since it is well characterized that induction of autophagy by IFN-γ eliminates intracellular mycobacterium by overcoming the phagosome maturation block imposed by bacilli. We report here that IL-6 inhibits both IFN-γ and starvation induced autophagy in M. tuberculosis H37Rv infected cells. M. tuberculosis H37Rv infection results in time dependent production of IL-6 in THP-1 cells and neutralization of this endogenous IL-6 by anti-IL-6 antibody significantly enhances the IFN-γ mediated killing of the intracellular bacteria. IL-6 time dependently lowers Atg12-Atg5 complex and therefore inhibits autophagosome biogenesis rather than autophagolysosome formation. IL-6 also affects IFN-γ mediated stimulation of mTOR, p-38 and JNK pathways. These results clearly indicate that virulent mycobacteria strategically upregulate IL-6 production to combat innate immunity.  相似文献   
956.
A majority of cells obtain of transferrin (Tf) bound iron via transferrin receptor 1 (TfR1) or by transferrin receptor 2 (TfR2) in hepatocytes. Our study establishes that cells are capable of acquiring transferrin iron by an alternate pathway via GAPDH.These findings demonstrate that upon iron depletion, GAPDH functions as a preferred receptor for transferrin rather than TfR1 in some but not all cell types. We utilized CHO-TRVb cells that do not express TfR1 or TfR2 as a model system. A knockdown of GAPDH in these cells resulted in a decrease of not only transferrin binding but also associated iron uptake. The current study also demonstrates that, unlike TfR1 and TfR2 which are localized to a specific membrane fraction, GAPDH is located in both the detergent soluble and lipid raft fractions of the cell membrane. Further, transferrin uptake by GAPDH occurs by more than one mechanism namely clathrin mediated endocytosis, lipid raft endocytosis and macropinocytosis. By determining the kinetics of this pathway it appears that GAPDH-Tf uptake is a low affinity, high capacity, recycling pathway wherein transferrin is catabolised. Our findings provide an explanation for the detailed role of GAPDH mediated transferrin uptake as an alternate route by which cells acquire iron.  相似文献   
957.
Neutrophils expel extracellular traps (NETs) to entrap and exterminate the invaded micro-organisms. Acute/chronic inflammatory disorders are often observed with aberrantly enhanced NETs formation and high nitric oxide (NO) availability. Recent study from this laboratory demonstrated release of NETs from human neutrophils following treatment with SNP or SNAP. This study is an extension of our previous finding to explore the extracellular bacterial killing, source of DNA in the expelled NETs, their ability to induce proinflammatory cytokines release from platelets/THP-1 cells, and assessment of NO-mediated free radical formation by using a consistent NO donor, DETA-NONOate. NO-mediated NETs exhibited extracellular bacterial killing as determined by colony forming units. NO-mediated NETs formation was due to the activation of NADPH oxidase and myeloperoxidase. NO- or PMA-mediated NETs were positive for both nuclear and mitochondrial DNA as well as proteolytic enzymes. Incubation of NETs with human platelets enhanced the release of IL-1β and IL-8, while with THP-1 cells, release of IL-1β, IL-8, and TNFα was observed. This study demonstrates that NO by augmenting enzymatic free radical generation release NETs to promote extracellular bacterial killing. These NETs were made up of mitochondrial and nuclear DNA and potentiated release of proinflammatory cytokines.  相似文献   
958.
959.
Inteins and other self-catalytic enzymes, such as glycosylasparaginases and hedgehog precursors, initiate autocleavage by converting a peptide bond to a (thio)ester bond when Ser, Thr, or Cys undergoes an N-[S/O] acyl migration assisted by residues within the precursor. Previous studies have shown that a His at position 10 in intein Block B is essential for this initial acyl migration and N-terminal splice junction cleavage. This His is present in all inteins identified to date except the Thermococcus kodakaraensis Tko CDC21-1 intein orthologs and the inactive Arthrobacter species FB24 Arth_1007 intein. This study demonstrates that the Tko CDC21-1 intein is fully active and has replaced the lost catalytic function normally provided by the Block B His using a compensatory mechanism involving a conserved ortholog-specific basic residue (Lys(58)) present outside the standard intein conserved motifs. We propose that Lys(58) catalyzes the initial N-S acyl migration by stabilizing the thiazolidine-tetrahedral intermediate, allowing it to be resolved by water-mediated hydrolysis rather than by protonating the leaving group as His is theorized to do in many other inteins. Autoprocessing enzymes may have more flexibility in evolving catalytic variations because high reaction rates are not required when performing single-turnover reactions on "substrates" that are covalently attached to the enzyme. Consequently, inteins have more flexibility to sample catalytic mechanisms, providing insight into various strategies that enzymes use to accomplish catalysis.  相似文献   
960.
After cholesterol is transported into the mitochondria of steroidogenic tissues, the first steroid, pregnenolone, is synthesized in adrenal and gonadal tissues to initiate steroid synthesis by catalyzing the conversion of pregnenolone to progesterone, which is mediated by the inner mitochondrial enzyme 3β-hydroxysteroid dehydrogenase 2 (3βHSD2). We report that the mitochondrial translocase Tom22 is essential for metabolic conversion, as its knockdown by small interfering RNA (siRNA) completely ablated progesterone conversion in both steroidogenic mouse Leydig MA-10 and human adrenal NCI cells. Tom22 forms a 500-kDa complex with mitochondrial proteins associated with 3βHSD2. Although the absence of Tom22 did not inhibit mitochondrial import of cytochrome P450scc (cytochrome P450 side chain cleavage enzyme) and aldosterone synthase, it did inhibit 3βHSD2 expression. Electron microscopy showed that Tom22 is localized at the outer mitochondrial membrane (OMM), while 3βHSD2 is localized at the inner mitochondrial space (IMS), where it interacts through a specific region with Tom22 with its C-terminal amino acids and a small amino acid segment of Tom22 exposed to the IMS. Therefore, Tom22 is a critical regulator of steroidogenesis, and thus, it is essential for mammalian survival.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号