首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1149篇
  免费   139篇
  2021年   17篇
  2020年   12篇
  2019年   9篇
  2018年   8篇
  2017年   11篇
  2015年   39篇
  2014年   38篇
  2013年   53篇
  2012年   47篇
  2011年   57篇
  2010年   30篇
  2009年   32篇
  2008年   40篇
  2007年   41篇
  2006年   38篇
  2005年   33篇
  2004年   34篇
  2003年   38篇
  2002年   42篇
  2001年   27篇
  2000年   28篇
  1999年   33篇
  1998年   11篇
  1997年   18篇
  1996年   10篇
  1995年   15篇
  1994年   19篇
  1992年   26篇
  1991年   39篇
  1990年   22篇
  1989年   33篇
  1988年   26篇
  1987年   22篇
  1986年   18篇
  1985年   27篇
  1984年   17篇
  1983年   13篇
  1982年   14篇
  1981年   16篇
  1980年   17篇
  1979年   13篇
  1978年   12篇
  1977年   16篇
  1976年   22篇
  1975年   17篇
  1974年   18篇
  1973年   15篇
  1972年   14篇
  1968年   6篇
  1967年   6篇
排序方式: 共有1288条查询结果,搜索用时 31 毫秒
71.
72.
Cui  Guibin  Zhao  Yanfeng  Zhang  Jialing  Chao  Manning  Xie  Kunliang  Zhang  Chao  Sun  Fengli  Liu  Shudong  Xi  Yajun 《Plant molecular biology》2019,100(4-5):391-410
Plant Molecular Biology - Our results reveal both soil drought and PEG can enhance malate, glutathione and ascorbate metabolism, and proline biosynthesis, whereas soil drought induced these...  相似文献   
73.
Mating displays often contain multiple signals. Different combinations of these signals may be equally successful at attracting a mate, as environment and signal combination may influence relative signal weighting by choosy individuals. This variation in signal weighting among choosy individuals may facilitate the maintenance of polymorphic displays and signalling behaviour. One group of animals known for their polymorphic patterning are Batesian mimetic butterflies, where the interaction of sexual selection and predation pressures is hypothesized to influence the maintenance of polymorphic wing patterning and behaviour. Males in the female‐limited polymorphic Batesian mimetic butterfly Papilio polytes use female wing pattern and female activity levels when determining whom to court. They court stationary females with mimetic wing patterns more often than stationary females with non‐mimetic, male‐like wing patterns and active females more often than inactive females. It is unclear whether females modify their behaviour to increase (or decrease) their likelihood of receiving male courtship, or whether non‐mimetic females spend more time in cryptic environments than mimetic females, to compensate for their lack of mimicry‐driven predation protection (at the cost of decreased visibility to males). In addition, relative signal weighting of female wing pattern and activity to male mate selection is unknown. To address these questions, we conducted a series of observational studies of a polymorphic P. polytes population in a large butterfly enclosure. We found that males exclusively courted active females, irrespective of female wing pattern. However, males did court active non‐mimetic females significantly more often than expected given their relative abundance in the population. Females exhibited similar activity levels, and selected similar resting environments, irrespective of wing pattern. Our results suggest that male preference for non‐mimetic females may play an active role in the maintenance of the non‐mimetic female form in natural populations, where males are likely to be in the presence of active, as well as inactive, mimetic and non‐mimetic females.  相似文献   
74.
Monocyte chemoattractant protein-1 (MCP-1) is a chemotactic cytokine mainly acting on monocytes and T cells that elicits its biological effects by interacting with the seven-transmembrane helix receptor CCR2B. The vaccinia virus strain Lister and many other poxviruses express soluble proteins (vCCI) that bind MCP-1 and other CC chemokines and inhibit their function. In order to define the interaction site of MCP-1 with vCCI from vaccinia, surface exposed residues of MCP-1 were identified and mutated to alanine. The MCP-1 variants were expressed, purified, and their interaction with vCCI was characterized. The site on MCP-1 for vCCI binding is dominated by arginine 18 with important additional contributions from tyrosine 13 and arginine 24. These residues define a binding site that largely overlaps with the CCR2B receptor interaction site. The viral chemokine-binding protein vCCI thus inhibits the biological function of MCP-1 by directly masking its CCR2B receptor-binding site.  相似文献   
75.
IkappaB kinase-1 and IkappaB kinase-2 (IKK1 and IKK2; also called IKKalpha and IKKbeta, respectively) are part of the signal complex that regulates NF-kappaB activity in many cell types, including fibroblast-like synoviocytes (FLS). We determined which of these two kinases is responsible for cytokine-induced NF-kappaB activation in synoviocytes and assessed the functional consequences of IKK1 or IKK2 overexpression and inhibition. FLS were infected with adenovirus constructs encoding either wild-type (wt) IKK1 or IKK2, the dominant negative (dn) mutant of both kinases, or a control construct encoding green fluorescence protein. Analysis of the NF-kappaB pathway revealed that cytokine-induced IKK activation, IkappaB degradation, and NF-kappaB activation was prevented in cells expressing the IKK2 dn mutant, whereas baseline NF-kappaB activity was increased by IKK2 wt. In addition, synthesis of IL-6 and IL-8, as well as expression of ICAM-1 and collagenase, was only increased by IKK2 wt, and their cytokine-induced production was abrogated by IKK2 dn mutant. However, the IKK1 dn mutant did not inhibit cytokine-mediated activation of NF-kappaB or any of the functional assays. These data indicate that IKK2 is the key convergence pathway for cytokine-induced NF-kappaB activation. Furthermore, IKK2 regulates adhesion molecule, matrix metalloproteinase, and cytokine production in FLS.  相似文献   
76.
The melting temperature of the poly(dA) . poly(dT) double helix is exquisitely sensitive to salt concentration, and the helix-to-coil transition is sharp. Modern calorimetric instrumentation allows this transition to be detected and characterized with high precision at extremely low duplex concentrations. We have taken advantage of these properties to show that this duplex can be used as a sensitive probe to detect and to characterize the influence of other solutes on solution properties. We demonstrate how the temperature associated with poly(dA) . poly(dT) melting can be used to define the change in bulk solution cation concentration imparted by the presence of other duplex and triplex solutes, in both their native and denatured states. We use this information to critically evaluate features of counterion condensation theory, as well as to illustrate "crosstalk" between different, non-contacting solute molecules. Specifically, we probe the melting of a synthetic homopolymer, poly(dA) . poly(dT), in the presence of excess genomic salmon sperm DNA, or in the presence of one of two synthetic RNA polymers (the poly(rA) . poly(rU) duplex or the poly(rU) . poly(rA) . poly(rU) triplex). We find that these additions cause a shift in the melting temperature of poly(dA) . poly(dT), which is proportional to the concentration of the added polymer and dependent on its conformational state (B versus A, native versus denatured, and triplex versus duplex). To a first approximation, the magnitude of the observed tm shift does not depend significantly on whether the added polymer is RNA or DNA, but it does depend on the number of strands making up the helix of the added polymer. We ascribe the observed changes in melting temperature of poly(dA) . poly(dT) to the increase in ionic strength of the bulk solution brought about by the presence of the added nucleic acid and its associated counterions. We refer to this communication between non-contacting biopolymers in solution as solvent-mediated crosstalk. By comparison with a known standard curve of tm versus log[Na+] for poly(dA) . poly(dT), we estimate the magnitude of the apparent change in ionic strength resulting from the presence of the bulk nucleic acid, and we compare these results with predictions from theory. We find that current theoretical considerations correctly predict the direction of the t(m) shift (the melting temperature increases), while overestimating its magnitude. Specifically, we observe an apparent increase in ionic strength equal to 5% of the concentration of the added duplex DNA or RNA (in mol phosphate), and an additional apparent increase of about 9.5 % of the nucleic acid concentration (mol phosphate) upon denaturation of the added DNA or RNA, yielding a total apparent increase of 14.5 %. For the poly(rU) . poly(rA) . poly(rU) triplex, the total apparent increase in ionic strength corresponds to about 13.6% of the amount of added triplex (moles phosphate). The effect we observe is due to coupled equilibria between the solute molecules mediated by modulations in cation concentration induced by the presence and/or the transition of one of the solute molecules. We note that our results are general, so one can use a different solute probe sensitive to proton binding to characterize subtle changes in solution pH induced by the presence of another solute in solution. We discuss some of the broader implications of these measurements/results in terms of nucleic acid melting in multicomponent systems, in terms of probing counterion environments, and in terms of potential regulatory mechanisms.  相似文献   
77.
78.
From July 1998 through October 2002, radiometric culture (ileocecal lymph node, mesenteric lymph node, and feces) and serologic testing by enzyme-linked immunosorbent assay (ELISA) were used to survey white-tailed deer (Odocoilens virgianus) from the soutlheastern United States for infection by Mycobacterium avium subsp. paratuberculosis (Mptb), the causative agent of paratuberculosis (Johne's disease). Mycobacterium avium subsp. paratuberculosis was isolated from the ileocecal lymph node of one of 313 deer (0.3%) originating from 63 populations in Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Maryland, Mississippi, North Carolina, South Carolina, Tennessee, and West Virginia (USA). Six deer (2%), all from different populations, had ELISA results above a 0.25 sample-to-positive cutoff value, but none of the ELISA reactors originated from the population from which the single Mptb isolation was made. These six deer were seronegative when tested by agar gel immunodiffusion (AGID). Collectively, these data indicate that white-tailed deer currently do not constitute a broad regional reservoir for Mptb; however, further study is warranted to clarify the significance, if any, of infected deer to the epizootiology of paratuberculosis on a local scale. Adaptation and validation of an ELISA or another serologic assay for use with deer and other wildlife would markedly enhance Mptb surveillanece among wild populations and would be a powerful tool for gaining information on the role of wild species in epidemiology of paratuberculosis.  相似文献   
79.
BACKGROUND: WASp family proteins promote actin filament assembly by activating Arp2/3 complex and are regulated spatially and temporally to assemble specialized actin structures used in diverse cellular processes. Some WASp family members are autoinhibited until bound by activating ligands; however, regulation of the budding yeast WASp homolog (Las17/Bee1) has not yet been explored. RESULTS: We isolated full-length Las17 and characterized its biochemical activities on yeast Arp2/3 complex. Purified Las17 was not autoinhibited; in this respect, it is more similar to SCAR/WAVE than to WASp proteins. Las17 was a much stronger activator of Arp2/3 complex than its carboxyl-terminal (WA) fragment. In addition, actin polymerization stimulated by Las17-Arp2/3 was much less sensitive to the inhibitory effects of profilin compared to polymerization stimulated by WA-Arp2/3. Two SH3 domain-containing binding partners of Las17, Sla1 and Bbc1, were purified and were shown to cooperate in inhibiting Las17 activity. The two SLA1 SH3 domains required for this inhibitory activity in vitro were also required in vivo, in combination with BBC1, for cell viability and normal actin organization. CONCLUSIONS: Full-length Las17 is not autoinhibited and activates Arp2/3 complex more strongly than its WA domain alone, revealing an important role for the Las17 amino terminus in Arp2/3 complex activation. Two of the SH3 domain-containing ligands of Las17, Sla1 and Bbc1, cooperate to inhibit Las17 activity in vitro and are required for a shared function in actin organization in vivo. Our results show that, like SCAR/WAVE, WASp proteins can be controlled by negative regulation through the combined actions of multiple ligands.  相似文献   
80.
BACKGROUND: Tuberous Sclerosis Complex (TSC) is a genetic disorder that occurs through the loss of heterozygosity of either TSC1 or TSC2, which encode Hamartin or Tuberin, respectively. Tuberin and Hamartin form a tumor suppressor heterodimer that inhibits the mammalian target of rapamycin (mTOR) nutrient signaling input, but how this occurs is unclear. RESULTS: We show that the small G protein Rheb (Ras homolog enriched in brain) is a molecular target of TSC1/TSC2 that regulates mTOR signaling. Overexpression of Rheb activates 40S ribosomal protein S6 kinase 1 (S6K1) but not p90 ribosomal S6 kinase 1 (RSK1) or Akt. Furthermore, Rheb induces phosphorylation of eukaryotic initiation factor 4E binding protein 1 (4E-BP1) and causes 4E-BP1 to dissociate from eIF4E. This dissociation is completely sensitive to rapamycin (an mTOR inhibitor) but not wortmannin (a phosphoinositide 3-kinase [PI3K] inhibitor). Rheb also activates S6K1 during amino acid insufficiency via a rapamycin-sensitive mechanism, suggesting that Rheb participates in nutrient signaling through mTOR. Moreover, Rheb does not activate a S6K1 mutant that is unresponsive to mTOR-mediated signals, confirming that Rheb functions upstream of mTOR. Overexpression of the Tuberin-Hamartin heterodimer inhibits Rheb-mediated S6K1 activation, suggesting that Tuberin functions as a Rheb GTPase activating protein (GAP). Supporting this notion, TSC patient-derived Tuberin GAP domain mutants were unable to inactivate Rheb in vivo. Moreover, in vitro studies reveal that Tuberin, when associated with Hamartin, acts as a Rheb GTPase-activating protein. Finally, we show that membrane localization of Rheb is important for its biological activity because a farnesylation-defective mutant of Rheb stimulated S6K1 activation less efficiently. CONCLUSIONS: We show that Rheb acts as a novel mediator of the nutrient signaling input to mTOR and is the molecular target of TSC1 and TSC2 within mammalian cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号