首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   8篇
  国内免费   1篇
  131篇
  2023年   2篇
  2022年   4篇
  2021年   5篇
  2020年   1篇
  2019年   2篇
  2018年   7篇
  2017年   2篇
  2016年   1篇
  2015年   6篇
  2014年   6篇
  2013年   6篇
  2012年   10篇
  2011年   7篇
  2010年   6篇
  2009年   9篇
  2008年   7篇
  2007年   6篇
  2006年   4篇
  2005年   1篇
  2004年   2篇
  2003年   4篇
  2001年   2篇
  1999年   3篇
  1998年   6篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1983年   3篇
  1982年   2篇
  1977年   1篇
排序方式: 共有131条查询结果,搜索用时 15 毫秒
81.
In previous studies we have found that FcγRI determines chondrocyte death and matrix metalloproteinase (MMP)-mediated cartilage destruction during IFN-γ-regulated immune complex arthritis (ICA). Binding of immune complexes (ICs) to FcγRI leads to the prominent production of oxygen radicals. In the present study we investigated the contribution of NADPH-oxidase-driven oxygen radicals to cartilage destruction by using p47phox-/- mice lacking a functional NADPH oxidase complex. Induction of a passive ICA in the knee joints of p47phox-/- mice resulted in a significant elevation of joint inflammation at day 3 when compared with wild-type (WT) controls as studied by histology. However, when IFN-γ was overexpressed by injection of adenoviral IFN-γ in the knee joint before ICA induction, a similar influx of inflammatory cells was found at days 3 and 7, comprising mainly macrophages in both mouse strains. Proteoglycan depletion from the cartilage layers of the knee joints in both groups was similar at days 3 and 7. Aggrecan breakdown in cartilage caused by MMPs was further studied by immunolocalisation of MMP-mediated neoepitopes (VDIPEN). VDIPEN expression in the cartilage layers of arthritic knee joints was markedly lower (between 30 and 60%) in IFN-γ-stimulated arthritic p47phox-/- mice at day 7 than in WT controls, despite significant upregulation of mRNA levels of various MMPs such as MMP-3, MMP-9, MMP-12 and MMP-13 in synovia and MMP-13 in cartilage layers as measured with quantitative RT-PCR. The latter observation suggests that oxygen radicals are involved in the activation of latent MMPs. Chondrocyte death, determined as the percentage of empty lacunae in articular cartilage, ranged between 20 and 60% at day 3 and between 30 and 80% at day 7 in WT mice, and was completely blocked in p47phox-/- mice at both time points. FcγRI mRNA expression was significantly lower, and FcγRII and FcγRIII were higher, in p47phox-/- mice than in controls. NADPH-oxidase-driven oxygen radical production determines chondrocyte death and aggravates MMP-mediated cartilage destruction during IFN-γ-stimulated IC-mediated arthritis. Upregulation of FcγRI by oxygen radicals may contribute to cartilage destruction.  相似文献   
82.

Background

Determining the presence and extent of co-morbidities is fundamental in assessing patients with chronic respiratory disease, where increased cardiovascular risk, presence of osteoporosis and low muscle mass have been recognised in several disease states. We hypothesised that the systemic consequences are evident in a further group of subjects with COPD due to Alpha-1 Antitrypsin Deficiency (A1ATD), yet are currently under-recognised.

Methods

We studied 19 patients with PiZZ A1ATD COPD and 20 age, sex and smoking matched controls, all subjects free from known cardiovascular disease. They underwent spirometry, haemodynamic measurements including aortic pulse wave velocity (aPWV), an independent predictor or cardiovascular risk, dual energy X-ray absorptiometry to determine body composition and bone mineral density.

Results

The aPWV was greater in patients: 9.9(2.1) m/s than controls: 8.5(1.6) m/s, p = 0.03, despite similar mean arterial pressure (MAP). The strongest predictors of aPWV were age, FEV1% predicted and MAP (all p < 0.01). Osteoporosis was present in 8/19 patients (2/20 controls) and was previously unsuspected in 7 patients. The fat free mass and bone mineral density were lower in patients than controls (p < 0.001).

Conclusions

Patients with A1ATD related COPD have increased aortic stiffness suggesting increased risk of cardiovascular disease and evidence of occult musculoskeletal changes, all likely to contribute hugely to overall morbidity and mortality.  相似文献   
83.
84.
The bacteriophage P1-encoded Ref protein enhances RecA-dependent recombination in vivo by an unknown mechanism. We demonstrate that Ref is a new type of enzyme; that is, a RecA-dependent nuclease. Ref binds to ss- and dsDNA but does not cleave any DNA substrate until RecA protein and ATP are added to form RecA nucleoprotein filaments. Ref cleaves only where RecA protein is bound. RecA functions as a co-nuclease in the Ref/RecA system. Ref nuclease activity can be limited to the targeted strands of short RecA-containing D-loops. The result is a uniquely programmable endonuclease activity, producing targeted double-strand breaks at any chosen DNA sequence in an oligonucleotide-directed fashion. We present evidence indicating that cleavage occurs in the RecA filament groove. The structure of the Ref protein has been determined to 1.4 Å resolution. The core structure, consisting of residues 77–186, consists of a central 2-stranded β-hairpin that is sandwiched between several α-helical and extended loop elements. The N-terminal 76 amino acid residues are disordered; this flexible region is required for optimal activity. The overall structure of Ref, including several putative active site histidine residues, defines a new subclass of HNH-family nucleases. We propose that enhancement of recombination by Ref reflects the introduction of directed, recombinogenic double-strand breaks.  相似文献   
85.
The Baja California Peninsula and surrounding landmasses harbor an abundant flora in an otherwise harsh and arid environment. Of the many plant groups native to this peninsular and insular region, passionflowers (Passiflora, Passifloraceae) are represented by several conspicuous taxa that all belong to a single lineage, section Dysosmia. Basic questions remain regarding this group, particularly the taxonomic status among the Passiflora arida complex. Therefore, we investigated the claims of endemism, habitat characteristics, and taxon boundaries with in section Dysosmia in the Baja California region using extensive sampling of herbarium specimens and iNaturalist observations. We confirmed that only one of the native Passiflora taxa (P. fruticosa) was endemic to the Baja California Peninsula, with an additional taxon (P. palmeri) considered near‐endemic. Environmental data revealed significant distinctions between the habitats of many of the native taxa as well as within the P. arida complex, especially with respect to precipitation and temperature tolerances. Geometric morphometric analyses of leaf shape were largely not successful at separating taxa, indicating leaf shape may not be a good indicator of taxon identity in this particular group. Based on ecological differences and discrete macro‐ and micromorphological features, a varietal name is here synonymized and a new combination is proposed: Passiflora pentaschista.  相似文献   
86.
Transgenic mice are used to study the roles of specific proteins in an intact living system. Use of transgenic mice to study processes in cartilage, however, poses some challenges. First of all, many factors involved in cartilage homeostasis and disease are also crucial factors in embryogenesis. Therefore, meddling with these factors often leads to death before birth, and mice who do survive cannot be considered normal. The build-up of cartilage in these mice is altered, making it nearly impossible to truly interpret the role of a protein in adult cartilage function. An elegant way to overcome these limitations is to make transgenic mice time- and tissue-specific, thereby omitting side-effects in tissues other than cartilage and during embryology. This review discusses the potential building blocks for making an inducible cartilage-specific transgenic mouse. We review which promoters can be used to gain chondrocyte-specificity - all chondrocytes or a specific subset thereof - as well as different systems that can be used to enable inducibility of a transgene.  相似文献   
87.
We investigated leaf anatomy and micromorphology in the New World Vitis using light and scanning electron microscopy to understand the correlation of these traits to molecular phylogenetic relationships and environmental affinity. We observed traits known to differ among species of Vitis with importance in traditional taxonomy of Vitis: trichome type, stomata morphology, mesophyll organization, and midrib vascularization. We found that traits associated with water conductance and photosynthesis comprised the highest loadings of axis one of a principal components analysis (PCA) while traits related to gas exchange (i.e., the stomatal apparatus) had high loadings on axis two. Using the PCA, we identified seven clusters of species, which showed little correlation to recently reported molecular phylogenetic relationships. Moreover, analyses using Bayes Traits and Bayesian Binary Method revealed little to no phylogenetic signal in trait evolution. PCA axes one and two separated species occurring in dry southwestern North American habitats from those in mesic places. For example, a cluster of V. monticola and V. arizonica occurred adjacent to a cluster of V. californica and V. girdiana in ordination space, and the latter three species share key leaf anatomical traits. Nevertheless, among these, only V. arizonica and V. girdiana are closely related according to molecular phylogeny. Thus, the leaf micromorphological/anatomical traits of Vitis observed in this study are highly correlated with environment, but not phylogenetic relationships. We expect that trait similarities among distantly related species may result from evolutionary convergences, especially within xeric habitats of western North America.  相似文献   
88.
The origins of cultivated chrysanthemums have attracted considerable attention, but they remain poorly known. Here, we reconstructed the phylogeny of representative well‐known cultivars and wild species of the genus Chrysanthemum using chloroplast genomes and the nuclear LEAFY gene. Our results suggest that geographic and ecological factors may determine the opportunities for wild species to be involved in the origin of the cultivars. The wild species C. indicum, C. zawadskii, C. dichrum, C. nankingense, C. argyrophyllum, and C. vestitum were likely directly or indirectly involved as paternal species of most of the chrysanthemum cultivars examined in this study. Yet, the maternal species is supported to be a lineage of an extinct wild Chrysanthemum species and its subsequent cultivars, as all accessions of chrysanthemum cultivars sampled formed a strongly supported clade, distinct from all other species of Chrysanthemum in the plastome tree. Thus, the cultivated chrysanthemums originated from multiple hybridizations involving several paternal species rather than only two or a few wild species, with an extinct species and its subsequent cultivars serving as the maternal parents. This finding is consistent with Chrysanthemum having high rates of hybridization and gene flow, which has been demonstrated within previous studies; nevertheless, it is important to unravel the role of an extinct wild Chrysanthemum species as the ultimate maternal parent species for all the chrysanthemum cultivars. Our results also suggest that C. vestitum from Tianzhu and Funiu Mountains in Anhui and Henan Provinces of China represent two distinct cryptic species.  相似文献   
89.
Herbivory is a dominant feeding strategy among animals, yet herbivores are often protein limited. The gut microbiome is hypothesized to help maintain host protein balance by provisioning essential macromolecules, but this has never been tested in wild consumers. Using amino acid carbon (δ13C) and nitrogen (δ15N) isotope analysis, we estimated the proportional contributions of essential amino acids (AAESS) synthesized by gut microbes to five co-occurring desert rodents representing herbivorous, omnivorous and insectivorous functional groups. We found that herbivorous rodents occupying lower trophic positions (Dipodomys spp.) routed a substantial proportion (~40%–50%) of their AAESS from gut microbes, while higher trophic level omnivores (Peromyscus spp.) and insectivores (Onychomys arenicola) obtained most of their AAESS (~58%) from plant-based energy channels but still received ~20% of their AAESS from gut microbes. These findings empirically demonstrate that gut microbes play a key functional role in host protein metabolism in wild animals.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号