首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   380篇
  免费   85篇
  2021年   4篇
  2019年   5篇
  2018年   6篇
  2017年   5篇
  2016年   10篇
  2015年   16篇
  2014年   17篇
  2013年   16篇
  2012年   8篇
  2011年   13篇
  2010年   14篇
  2009年   11篇
  2008年   22篇
  2007年   18篇
  2006年   18篇
  2005年   25篇
  2004年   14篇
  2003年   14篇
  2002年   10篇
  2001年   13篇
  2000年   14篇
  1999年   3篇
  1998年   7篇
  1997年   3篇
  1996年   7篇
  1995年   5篇
  1994年   3篇
  1993年   7篇
  1992年   12篇
  1991年   12篇
  1990年   11篇
  1989年   12篇
  1988年   4篇
  1987年   8篇
  1986年   3篇
  1985年   6篇
  1984年   9篇
  1983年   5篇
  1982年   5篇
  1981年   4篇
  1980年   3篇
  1978年   6篇
  1977年   4篇
  1975年   6篇
  1974年   7篇
  1973年   4篇
  1972年   4篇
  1971年   3篇
  1970年   6篇
  1969年   3篇
排序方式: 共有465条查询结果,搜索用时 734 毫秒
141.
Benefits of organic farming to biodiversity vary among taxa   总被引:1,自引:0,他引:1  
Habitat and biodiversity differences between matched pairs of organic and non-organic farms containing cereal crops in lowland England were assessed by a large-scale study of plants, invertebrates, birds and bats. Habitat extent, composition and management on organic farms was likely to favour higher levels of biodiversity and indeed organic farms tended to support higher numbers of species and overall abundance across most taxa. However, the magnitude of the response varied; plants showed larger and more consistent responses than other taxa. Variation in response across taxa may be partly a consequence of the small size and isolated context of many organic farms. Extension of organic farming could contribute to the restoration of biodiversity in agricultural landscapes.  相似文献   
142.
During mRNA 3′ end formation, cleavage stimulation factor (CstF) binds to a GU-rich sequence downstream from the polyadenylation site and helps to stabilise the binding of cleavage-polyadenylation specificity factor (CPSF) to the upstream polyadenylation sequence (AAUAAA). The 64 kDa subunit of CstF (CstF-64) contains an RNA binding domain and is responsible for the RNA binding activity of CstF. It interacts with CstF-77, which in turn interacts with CPSF. The Drosophila suppressor of forked gene encodes a homologue of CstF-77, and mutations in it affect mRNA 3′ end formation in vivo. A Drosophila homologue for CstF-64 has now been isolated, both through homology with the human protein and through protein–protein interaction in yeast with the suppressor of forked gene product. Alignment of CstF-64 homologues shows that the proteins have a conserved N-terminal 200 amino acids, the first half of which is the RNA binding domain with the second half likely to contain the CstF-77 interaction domain; a central region variable in length and rich in glycine, proline and glutamine residues and containing an unusual degenerate repeat motif; and then a conserved C-terminal 50 amino acids. In Drosophila, the CstF-64 gene has a single 63 bp intron, is transcribed throughout development and probably corresponds to l(3)91Cd.  相似文献   
143.
144.
Brain abscess is associated with local vasogenic edema, which leads to increased intracranial pressure and significant morbidity. Aquaporin-4 (AQP4) is a water channel expressed in astroglia at the blood-brain and brain-CSF barriers. To investigate the role of AQP4 in brain abscess-associated edema, live Staphylococcus aureus (10(5) colony-forming units) was injected into the striatum to create a focal abscess. Wild-type and AQP4-deficient mice had comparable immune responses as measured by brain abscess volume (approximately 3.7 mm3 at 3 days), bacterial count and cytokine levels in brain homogenates. Blood-brain barrier permeability was increased comparably in both groups as assessed by extravasation of Evans blue dye. However, at 3 days the AQP4 null mice had significantly higher intracranial pressure (mean +/- SEM 27 +/- 2 vs. 17 +/- 2 mmHg; p < 0.001) and brain water content (81.0 +/- 0.3 vs. 79.3 +/- 0.5 % water by weight in the abscess-containing hemisphere; p < 0.01) than wild-type mice. Reactive astrogliosis was found throughout the abscess-containing hemisphere; however, only a subset of astrocytes in the peri-abscess region of wild-type mice had increased AQP4 immunoreactivity. Our findings demonstrate a protective effect of AQP4 on brain swelling in bacterial abscess, suggesting that AQP4 induction may reduce vasogenic edema associated with cerebral infection.  相似文献   
145.
Li X  Manley JL 《Cell》2005,122(3):365-378
  相似文献   
146.
RNA polymerase II, and specifically the C-terminal domain (CTD) of its largest subunit, has been demonstrated to play important roles in capping, splicing, and 3' processing of mRNA precursors. But how the CTD functions in these reactions, especially splicing, is not well understood. To address some of the basic questions concerning CTD function in splicing, we constructed and purified two fusion proteins, a protein in which the CTD is positioned at the C terminus of the splicing factor ASF/SF2 (ASF-CTD) and an RS domain deletion mutant protein (ASFDeltaRS-CTD). Significantly, compared to ASF/SF2, ASF-CTD increased the reaction rate during the early stages of splicing, detected as a 20- to 60-min decrease in splicing lag time depending on the pre-mRNA substrate. The increased splicing rate correlated with enhanced production of prespliceosomal complex A and the early spliceosomal complex B but, interestingly, not the very early ATP-independent complex E. Additional assays indicate that the RS domain and CTD perform distinct functions, as exemplified by our identification of an activity that cooperates only with the CTD. Dephosphorylated ASFDeltaRS-CTD and a glutathione S-transferase-CTD fusion protein were both inactive, suggesting that an RNA-targeting domain and CTD phosphorylation were necessary. Our results provide new insights into the mechanism by which the CTD functions in splicing.  相似文献   
147.
The SR protein SRp38 is a general splicing repressor that is activated by dephosphorylation during mitosis and in response to heat shock. Here we describe experiments that provide insights into the mechanism by which SRp38 functions in splicing repression. We first show that SRp38 redistributes and colocalizes with snRNPs, but not with a typical SR protein, SC35, during mitosis and following heat shock. Supporting the functional significance of this association, a micrococcal nuclease-sensitive component, i.e., an snRNP(s), completely rescued heat shock-induced splicing repression in vitro, and purified U1 snRNP did so partially. SRp38 contains an N-terminal RNA binding domain (RBD) and a C-terminal RS domain composed of two subdomains (RS1 and RS2 domains). Unexpectedly, an RS1 deletion mutant derivative specifically inhibited the second step of splicing, while an RS2 deletion mutant retained significant dephosphorylation-dependent repression activity. Using chimeric SRp38/SC35 proteins, we show that SC35-RBD/SRp38-RS can function as a general splicing activator and that the dephosphorylated version can act as a strong splicing repressor. SRp38-RBD/SC35-RS, however, was essentially inactive in these assays. Together, our results help to define the unusual features of SRp38 that distinguish it from other SR proteins.  相似文献   
148.
Previous studies have implicated Sonic hedgehog (Shh) as an important regulator of pharyngeal region development. Here we show that Shh is differentially expressed within the pharyngeal endoderm along the anterior-posterior axis. In Shh-/- mutants, the pharyngeal pouches and arches formed by E9.5 and marker expression showed that initial patterning was normal. However, by E10.5-E11.0, the first arch had atrophied and the first pouch was missing. Although small, the second, third, and fourth arches and pouches were present. The expression patterns of Fgf8, Pax1, and Bmp4 suggested that pouch identity was abnormal at E10.5 and that Shh is a negative regulator of these genes in the pouches. Despite the loss of pouch identity and an increase in mesenchymal cell death, arch identity markers were expressed normally. Our data show that a Shh-dependent patterning mechanism is required to maintain pouch patterning, independent or downstream of arch identity. Changes in the distribution of Bmp4 and Gcm2 in the third pouch endoderm and subsequent organ phenotypes in Shh-/- mutants suggested that exclusion of Shh from the third pouch is required for dorsal-ventral patterning and for parathyroid specification and organogenesis. Furthermore, this function for Shh may be opposed by Bmp4. Our data suggest that, as in the posterior gut endoderm, exclusion of Shh expression from developing primordia is required for the proper development of pharyngeal-derived organs.  相似文献   
149.
Pioneer species are fast-growing, short-lived gap exploiters. They are prime candidates for neutral dynamics because they contain ecologically similar species whose low adult density is likely to cause widespread recruitment limitation, which slows competitive dynamics. However, many pioneer guilds appear to be differentiated according to seed size. In this paper, we compare predictions from a neutral model of community structure with three niche-based models in which trade-offs involving seed size form the basis of niche differentiation. We test these predictions using sowing experiments with a guild of seven pioneer species from chalk grassland. We find strong evidence for niche structure based on seed size: specifically large-seeded species produce fewer seeds but have a greater chance of establishing on a per-seed basis. Their advantage in establishment arises because there are more microsites suitable for their germination and early establishment and not directly through competition with other seedlings. In fact, seedling densities of all species were equally suppressed by the addition of competitors' seeds. By the adult stage, despite using very high sowing densities, there were no detectable effects of interspecific competition on any species. The lack of interspecific effects indicates that niche differentiation, rather than neutrality, prevails.  相似文献   
150.

Background  

A common feature of microarray experiments is the occurence of missing gene expression data. These missing values occur for a variety of reasons, in particular, because of the filtering of poor quality spots and the removal of undefined values when a logarithmic transformation is applied to negative background-corrected intensities. The efficiency and power of an analysis performed can be substantially reduced by having an incomplete matrix of gene intensities. Additionally, most statistical methods require a complete intensity matrix. Furthermore, biases may be introduced into analyses through missing information on some genes. Thus methods for appropriately replacing (imputing) missing data and/or weighting poor quality spots are required.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号