首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188篇
  免费   6篇
  2023年   2篇
  2022年   2篇
  2021年   1篇
  2020年   4篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   3篇
  2014年   8篇
  2013年   7篇
  2012年   26篇
  2011年   17篇
  2010年   15篇
  2009年   5篇
  2008年   20篇
  2007年   17篇
  2006年   13篇
  2005年   11篇
  2004年   5篇
  2003年   7篇
  2002年   8篇
  2001年   4篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1992年   1篇
  1980年   1篇
  1976年   1篇
排序方式: 共有194条查询结果,搜索用时 218 毫秒
51.
Reaction between zinc cupferron and alkali at the organic-aqueous interface has been investigated in detail. In the presence of an organic amine, this reaction yields ZnO nanorods, the morphology depending on the concentration of reactants. In the absence of the amine, ultrathin films of ZnO are produced. Amazingly, both the nanorods and thin films are single crystalline in nature, even though the synthesis is carried out at room-temperature. Single-crystalline, substrate-free ultrathin films of ZnO, is indeed an extraordinary feature of synthesis at the liquid-liquid interface. Photoluminescence spectra show defect-related bands besides that due to band edge emission. The nanostructures exhibit ferromagnetism due to surface defects.  相似文献   
52.

Background

Host defense against invading pathogens is triggered by various receptors including toll-like receptors (TLRs). Activation of TLRs is a pivotal step in the initiation of innate, inflammatory, and antimicrobial defense mechanisms. Human β-defensin 2 (HBD-2) is a cationic antimicrobial peptide secreted upon Gram-negative bacterial perturbation in many cells. Stimulation of various TLRs has been shown to induce HBD-2 in oral keratinocytes, yet the underlying cellular mechanisms of this induction are poorly understood.

Principal Findings

Here we demonstrate that HBD-2 induction is mediated by the Sphingosine kinase-1 (Sphk-1) and augmented by the inhibition of Glycogen Synthase Kinase-3β (GSK-3β) via the Phosphoinositide 3-kinase (PI3K) dependent pathway. HBD-2 secretion was dose dependently inhibited by a pharmacological inhibitor of Sphk-1. Interestingly, inhibition of GSK-3β by SB 216763 or by RNA interference, augmented HBD-2 induction. Overexpression of Sphk-1 with concomitant inhibition of GSK-3β enhanced the induction of β-defensin-2 in oral keratinocytes. Ectopic expression of constitutively active GSK-3β (S9A) abrogated HBD-2 whereas kinase inactive GSK-3β (R85A) induced higher amounts of HBD-2.

Conclusions/Significance

These data implicate Sphk-1 in HBD-2 regulation in oral keratinocytes which also involves the activation of PI3K, AKT, GSK-3β and ERK 1/2. Thus we reveal the intricate relationship and pathways of toll-signaling molecules regulating HBD-2 which may have therapeutic potential.  相似文献   
53.
CD1d-restricted natural killer T cells with invariant T cell receptor α chains (iNKT cells) are a unique lymphocyte subset that responds to recognition of specific lipid and glycolipid antigens. They are conserved between mice and humans and exert various immunoregulatory functions through their rapid secretion of a variety of cytokines and secondary activation of dendritic cells, B cells and NK cells. In the current study, we analyzed the range of functional activation states of human iNKT cells using a library of novel analogs of α-galactosylceramide (αGalCer), the prototypical iNKT cell antigen. Measurement of cytokines secreted by human iNKT cell clones over a wide range of glycolipid concentrations revealed that iNKT cell ligands could be classified into functional groups, correlating with weak versus strong agonistic activity. The findings established a hierarchy for induction of different cytokines, with thresholds for secretion being consistently lowest for IL-13, higher for interferon-γ (IFNγ), and even higher for IL-4. These findings suggested that human iNKT cells can be intrinsically polarized to selective production of IL-13 by maintaining a low level of activation using weak agonists, whereas selective polarization to IL-4 production cannot be achieved through modulating the strength of the activating ligand. In addition, using a newly designed in vitro system to assess the ability of human iNKT cells to transactivate NK cells, we found that robust secondary induction of interferon-γ secretion by NK cells was associated with strong but not weak agonist ligands of iNKT cells. These results indicate that polarization of human iNKT cell responses to Th2-like or anti-inflammatory effects may best be achieved through selective induction of IL-13 and suggest potential discrepancies with findings from mouse models that may be important in designing iNKT cell-based therapies in humans.  相似文献   
54.
Genomics is accelerating the progress in data generation and interpretation in the global analyses of components of cells, including the spectrum of lipids, RNA, metabolites, proteins, mutational phenotypes or DNA methylation sites. Integration of the knowledge generated by these diverse strategies is predicted to have a tremendous impact on approaches to rational drug discovery against infectious diseases.  相似文献   
55.
A proteinase inhibitor resembling Bowman-Birk family inhibitors has been purified from the seeds of cultivar HA-3 of Dolichos lablab perpureus L. The protein was apparently homogeneous as judged by SDS–PAGE, PAGE, IEF, and immunodiffusion. The inhibitor had 12 mole% 1/2-cystine and a few aromatic amino acids, and lacks tryptophan. Field bean proteinase inhibitor (FBPI) exhibited a pI of 4.3 and an M r of 18,500 Da. CD spectral studies showed random coiled secondary structure. Conformational changes were detected in the FBPI–trypsin/chymotrypsin complexes by difference spectral studies. Apparent K a values of complexes of inhibitor with trypsin and chymotrypsin were 2.1 × 107 M–1 and 3.1 × 107 M–1, respectively. The binary and ternary complexes of FBPI with trypsin and chymotrypsin have been isolated indicating 1:1 stoichiometry with independent sites for cognate enzymes. Amino acid modification studies showed lysine and tyrosine at the reactive sites of FBPI for trypsin and chymotrypsin, respectively.  相似文献   
56.
The evolution of venom in advanced snakes has been a focus of long-standing interest. Here we provide the first complete amino acid sequence of a colubrid toxin, which we have called -colubritoxin, isolated from the Asian ratsnake Coelognathus radiatus (formerly known as Elaphe radiata), an archetypal nonvenomous snake as sold in pet stores. This potent postsynaptic neurotoxin displays readily reversible, competitive antagonism at the nicotinic receptor. The toxin is homologous with, and phylogenetically rooted within, the three-finger toxins, previously thought unique to elapids, suggesting that this toxin family was recruited into the chemical arsenal of advanced snakes early in their evolutionary history. LC-MS analysis of venoms from most other advanced snake lineages revealed the widespread presence of components of the same molecular weight class, suggesting the ubiquity of three-finger toxins across advanced snakes, with the exclusion of Viperidae. These results support the role of venom as a key evolutionary innovation in the early diversification of advanced snakes and provide evidence that forces a fundamental rethink of the very concept of nonvenomous snake.  相似文献   
57.
Ca2+ selective ion channels of vanilloid receptor subtype-1 (TRPV1) in capsaicin-sensitive dorsal root ganglion (DRG) neurons and TRPV1 transfected Chinese hamster ovarian (CHO) cells are desensitized following calcium-dependent tachyphylaxis induced by successive applications of 100 nM capsaicin. Tachyphylaxis of TRPV1 to 100 nM capsaicin stimuli was not observed in the absence of extracellular calcium. Capsaicin sensitivity of desensitized TRPV1 ion channels recovered on application of phorbol-12-myristate-13-acetate (PMA). PMA-induced recovery of desensitized TRPV1 was primarily due to influx of extracellular calcium observed during re-application of capsaicin following desensitization. Capsazepine blocked the re-sensitization to capsaicin by PMA. Protein kinase C (PKC) inhibitory peptide PKC fragment 19-36 also inhibited re-sensitization to capsaicin by PMA. Reversal of capsaicin-induced desensitization by PMA was prevented by a mutation of TRPV1 where phosphorylation sites serine502 and serine800 were replaced with alanine. This study provides evidence for a role of PKC in reversing capsaicin-induced calcium-dependent desensitization of TRPV1 ion channels.  相似文献   
58.
Zhang W  Wu Q  Pwee KH  Jois SD  Kini RM 《Biochemistry》2003,42(21):6596-6607
Wheat HMGa protein is a typical member of the plant HMGA family. It has four AT hooks and a histone H1-like region. A panel of deletion mutants of HMGa was generated to study the role of different regions of HMGa in its binding to 4H (a synthetic DNA that mimics the in vivo structure of intermediates of homologous recombination and DNA repair) and linear DNAs. Although the histone H1-like region of HMGa does not bind to 4H or linear DNAs, it does enhance the binding. Mutants with any two adjacent AT hooks show specific binding to both 4H and linear P268 (and P31) with different binding affinities, which is partly due to the flanking regions between AT hooks. Conformational studies indicate that the alpha-helical content of HMGa increases significantly when it binds to 4H compared to that after binding to P31, linear DNA. In contrast, linear DNA, but not 4H, undergoes substantial conformational change when it binds to HMGa, indicating that linear DNA is relatively more flexible than 4H. A more significant difference in the affinities of binding of the mutants of HMGa to 4H was observed compared to their affinities of binding to linear DNA, P31. These differences could be due to the rigidity of the DNA and the characters of the AT hook regions in the mutants.  相似文献   
59.
Biomineralization is an important process in which hard tissues are generated through mineral deposition, often assisted by biomacromolecules. Eggshells, because of their rapid formation via mineralization, are chosen as a model for understanding the fundamentals of biomineralization. This report discusses purification and characterization of various proteins and peptides from goose eggshell matrix. A novel 15-kDa protein (ansocalcin) was extracted from the eggshell matrix, purified, and identified and its role in mineralization evaluated using in vitro crystal growth experiments. The complete amino acid sequence of ansocalcin showed high homology to ovocleidin-17, a chicken eggshell protein, and to C-type lectins from snake venom. The amino acid sequence of ansocalcin was characterized by the presence of acidic and basic amino acid multiplets. In vitro crystallization experiments showed that ansocalcin induced pits on the rhombohedral faces at lower concentrations (<50 microg/ml). At higher concentrations, the nucleation of calcite crystal aggregates was observed. Molecular weight determinations by size exclusion chromatography and sodium dodecyl sulfate -polyacrylamide gel electrophoresis showed reversible concentration-dependent aggregation of ansocalcin in solution. We propose that such aggregated structures may act as a template for the nucleation of calcite crystal aggregates. Similar aggregation of calcite crystals was also observed when crystallizations were performed in the presence of whole goose eggshell extract. These results show that ansocalcin plays a significant role in goose eggshell calcification.  相似文献   
60.
The biophysical properties of small conductance Ca(2+)-activated K(+) (SK) channels are well suited to underlie afterhyperpolarizations (AHPs) shaping the firing patterns of a conspicuous number of central and peripheral neurons. We have identified a new scorpion toxin (tamapin) that binds to SK channels with high affinity and inhibits SK channel-mediated currents in pyramidal neurons of the hippocampus as well as in cell lines expressing distinct SK channel subunits. This toxin distinguished between the SK channels underlying the apamin-sensitive I(AHP) and the Ca(2+)-activated K(+) channels mediating the slow I(AHP) (sI(AHP)) in hippocampal neurons. Compared with related scorpion toxins, tamapin displayed a unique, remarkable selectivity for SK2 versus SK1 ( approximately 1750-fold) and SK3 ( approximately 70-fold) channels and is the most potent SK2 channel blocker characterized so far (IC(50) for SK2 channels = 24 pm). Tamapin will facilitate the characterization of the subunit composition of native SK channels and help determine their involvement in electrical and biochemical signaling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号