首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   316篇
  免费   25篇
  341篇
  2023年   1篇
  2022年   1篇
  2021年   7篇
  2020年   3篇
  2019年   3篇
  2018年   4篇
  2017年   7篇
  2016年   8篇
  2015年   15篇
  2014年   20篇
  2013年   21篇
  2012年   24篇
  2011年   15篇
  2010年   14篇
  2009年   16篇
  2008年   20篇
  2007年   19篇
  2006年   16篇
  2005年   18篇
  2004年   17篇
  2003年   10篇
  2002年   10篇
  2001年   4篇
  2000年   7篇
  1999年   4篇
  1998年   7篇
  1997年   3篇
  1996年   2篇
  1995年   4篇
  1994年   3篇
  1993年   1篇
  1992年   5篇
  1991年   4篇
  1990年   6篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1983年   2篇
  1981年   3篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有341条查询结果,搜索用时 0 毫秒
41.
The effect of isoproterenol on the levels of serum lipoprotein profile were studied in rats. Rats were treated with isoproterenol (200 mg/100 g body weight, sc twice at an interval of 24 hr) for 2 days. Aspirin was administered orally 1.2 mg/100 g body weight, daily for 60 days. Isoproterenol treated rats showed decrease in the activities of hepatic and extrahepatic lipoprotein lipase. HDL cholesterol level was found to be decreased, significantly with increase in LDL cholesterol in isoproterenol treated rats. Aspirin treated rats showed marked reversal of these metabolic changes. The lipoprotein changes were minimum in rats treated with both aspirin and isoproterenol.  相似文献   
42.
Disorganized redox homeostasis is a main factor causing a number of diseases and it is imperative to comprehend the orchestration of circadian clock under oxidative stress in the organism, Drosophila melanogaster. This investigation analyses the influence of hesperidin on the circadian rhythms of lipid peroxidation products and antioxidants during rotenone-stimulated oxidative stress in fruit fly. The characteristics of rhythms of thiobarbituric acid reactive substances (TBARS), antioxidants (superoxide dismutase (SOD) and catalase (CAT)) were noticeably decreased in rotenone administered flies. Supplementation of hesperidin to rotenone-treated flies increased the mesor and modulated the amplitudes of antioxidants and conspicuously decreased the mesor values of TBARS. In addition, delays in acrophase in rotenone-induced flies were reversed by hesperidin treatment. Thus, treatment of hesperidin caused normalization of the altered rhythms. Disorganization of 24 h rhythms in markers of redox homeostasis was observed during rotenone treatment and the impairment is severe in circadian clock mutant (Cryb) flies. Reversibility of rhythms was prominent subsequent to hesperidin treatment in wild-type flies than (Cryb) flies. These observations denote a role of circadian clock in redox homeostasis and the use of Drosophila model in screening putative antioxidative phytomedicines prior to their usage in mammalian systems.  相似文献   
43.
HexaPEGylated hemoglobin (Hb), a non-hypertensive Hb, exhibits high O2 affinity, which makes it difficult for it to deliver the desired levels of oxygen to tissues. The PEGylation of very low O2 affinity Hbs is now contemplated as the strategy to generate PEGylated Hbs with intermediate levels of O2 affinity. Toward this goal, a doubly modified Hb with very low O2 affinity has been generated. The amino terminal of the beta-chain of HbA is modified by 2-hydroxy, 3-phospho propylation first to generate a low oxygen affinity Hb, HPPr-HbA. The oxygen affinity of this Hb is insensitive to DPG and IHP. Molecular modeling studies indicated potential interactions between the covalently linked phosphate group and Lys-82 of the trans beta-chain. To further modulate the oxygen affinity of Hb, the alpha alpha-fumaryl cross-bridge has been introduced into HPPr-HbA in the mid central cavity. The doubly modified HbA (alpha alpha-fumaryl-HPPr-HbA) exhibits an O2 affinity lower than that of either of the singly modified Hbs, with a partial additivity of the two modifications. The geminate recombination and the visible resonance Raman spectra of the photoproduct of alpha alpha-fumaryl-HPPr-HbA also reflect a degree of additive influence of each of these modifications. The two modifications induced a synergistic influence on the chemical reactivity of Cys-93(beta). It is suggested that the doubly modified Hb has accessed the low affinity T-state that is non-responsive to effectors. The doubly modified Hb is considered as a potential candidate for generating PEGylated Hbs with an O2 affinity comparable to that of erythrocytes for developing blood substitutes.  相似文献   
44.
The circadian timing system controls drug metabolism and cellular processes over the 24 h period in every cell. Impaired redox homeostasis is a casual factor for a number of diseases and it is desirable to understand the orchestration of circadian clock under oxidative stress in the model organism, Drosophila melanogaster. This study evaluates the effect of hesperidin on the circadian rhythms of lipid peroxidation products and antioxidants during rotenone-induced oxidative stress in fruit fly. The characteristics of temporal rhythms (acrophase, amplitude, and mesor) of glutathione peroxides (GPx), reduced glutathione (GSH)), were markedly declined in rotenone-treated flies when compared to other groups. Treatment of hesperidin to rotenone-treated flies significantly increased the mesor and modified the amplitudes of antioxidants. Further, delays in acrophase in rotenone-induced flies were reversed by hesperidin treatment. Thus, treatment of hesperidin results in normalization of the altered rhythms of these indices plausibly by its cytoprotective and antioxidant effects. Impairment of 24 h rhythms in oxidative stress markers and antioxidants were observed during rotenone treatment and the impairment is severe in circadian clock mutant cryb flies. A reversibility of rhythms was prominent consequent to hesperidin treatment in wild-type flies than cryb flies. These findings revealed a role of circadian clock in redox homeostasis and the use of Drosophila model in screening putative antioxidative phytomedicines earlier to their use in mammalian systems.  相似文献   
45.
Background Hepatocellular carcinoma (HCC) is one of the life-threatening malignancies worldwide with hepatitis B and C virus infection as the major risk factor. The risk of HCC might also increase because of the hereditary genetic defects in DNA repair genes. In this regard, X-ray cross-complementing group 1 gene (XRCC1) is a major DNA repair gene involved in base excision repair (BER). Aim The present study was designed with an aim to find out any possible association between XRCC1 (codons 194, 280, and 399) polymorphisms and the risk of developing hepatitis virus-related HCC in Indian population. Methods A total of 407 subjects comprising (170 controls, 174 chronic viral hepatitis, and 63 HCC subjects) were included in the study. PCR–RFLP was used for the genotyping of the three codons of XRCC1. Results The study revealed that two genotypes Arg194Trp and Arg280His increased the risk of HCC by 2.27- (95% CI = 1.01–5.08; P < 0.001) and 4.95-folds (95% CI = 2.48–9.89; P < 0.001), respectively. Interestingly, the risk for HCC was further enhanced by 35.96 (95% CI = 11.64–110.91; P < 0.001) and 5.28 times (95% CI = 2.81–9.09; P < 0.001) when the genotype Arg280His was found in association with Arg194Trp and Arg399Gln, respectively. Conclusion These preliminary results suggest a positive association of XRCC1 genotypes and risk of hepatitis virus-related HCC in India.  相似文献   
46.
Development and repair of the skeletal system and other organs is highly dependent on precise regulation of bone morphogenetic proteins (BMPs), their receptors, and their intracellular signaling proteins known as Smads. The use of BMPs clinically to induce bone formation has been limited in part by the requirement of much higher doses of recombinant proteins in primates than were needed in cell culture or rodents. Therefore, control of cellular responsiveness to BMPs is now a critical area that is poorly understood. We determined that LMP-1, a LIM domain protein capable of inducing de novo bone formation, interacts with Smurf1 (Smad ubiquitin regulatory factor 1) and prevents ubiquitination of Smads. In the region of LMP responsible for bone formation, there is a motif that directly interacts with the Smurf1 WW2 domain and can effectively compete with Smad1 and Smad5 for binding. We have shown that small peptides containing this motif can mimic the ability to block Smurf1 from binding Smads. This novel interaction of LMP-1 with the WW2 domain of Smurf1 to block Smad binding results in increased cellular responsiveness to exogenous BMP and demonstrates a novel regulatory mechanism for the BMP signaling pathway.  相似文献   
47.
The helicase and primase activities of the hexameric ring-shaped T7 gp4 protein reside in two separate domains connected by a linker region. This linker region is part of the subunit interface between monomers, and point mutations in this region have deleterious effects on the helicase functions. One such linker region mutant, A257T, is analogous to the A359T mutant of the homologous human mitochondrial DNA helicase Twinkle, which is linked to diseases such as progressive external opthalmoplegia. Electron microscopy studies show that A257T gp4 is normal in forming rings with dTTP, but the rings do not assemble efficiently on the DNA. Therefore, A257T, unlike the WT gp4, does not preassemble on the unwinding DNA substrate with dTTP without Mg(II), and its DNA unwinding activity in ensemble assays is slow and limited by the DNA loading rate. Single molecule assays measured a 45 times slower rate of A257T loading on DNA compared with WT gp4. Interestingly, once loaded, A257T has almost WT-like translocation and DNA unwinding activities. Strikingly, A257T preassembles stably on the DNA in the presence of T7 DNA polymerase, which restores the ensemble unwinding activity of A257T to ~75% of WT, and the rescue does not require DNA synthesis. The DNA loading rate of A257T, however, remains slow even in the presence of the polymerase, which explains why A257T does not support T7 phage growth. Similar types of defects in the related human mitochondrial DNA helicase may be responsible for inefficient DNA replication leading to the disease states.  相似文献   
48.
Autophagy is a lysosomal degradative pathway that has diverse physiological functions and plays crucial roles in several viral infections. Here we examine the role of autophagy in the life cycle of JEV, a neurotropic flavivirus. JEV infection leads to induction of autophagy in several cell types. JEV replication was significantly enhanced in neuronal cells where autophagy was rendered dysfunctional by ATG7 depletion, and in Atg5-deficient mouse embryonic fibroblasts (MEFs), resulting in higher viral titers. Autophagy was functional during early stages of infection however it becomes dysfunctional as infection progressed resulting in accumulation of misfolded proteins. Autophagy-deficient cells were highly susceptible to virus-induced cell death. We also observed JEV replication complexes that are marked by nonstructural protein 1 (NS1) and dsRNA colocalized with endogenous LC3 but not with GFP-LC3. Colocalization of NS1 and LC3 was also observed in Atg5 deficient MEFs, which contain only the nonlipidated form of LC3. Viral replication complexes furthermore show association with a marker of the ER-associated degradation (ERAD) pathway, EDEM1 (ER degradation enhancer, mannosidase α-like 1). Our data suggest that virus replication occurs on ERAD-derived EDEM1 and LC3-I-positive structures referred to as EDEMosomes. While silencing of ERAD regulators EDEM1 and SEL1L suppressed JEV replication, LC3 depletion exerted a profound inhibition with significantly reduced RNA levels and virus titers. Our study suggests that while autophagy is primarily antiviral for JEV and might have implications for disease progression and pathogenesis of JEV, nonlipidated LC3 plays an important autophagy independent function in the virus life cycle.  相似文献   
49.
The general assumption among researchers on hemoglobin is that the intramolecular central cavity cross-bridging of Hb does not result in any generalized perturbations at the protein surface. A corollary of this is that central cavity cross-bridges are unlikely to influence the polymerization of deoxy HbS, since polymerization is a protein surface phenomenon involving the participation of multiple protein surface amino acid residues. In an attempt to evaluate this experimentally, we have introduced two low-O2-affinity-inducing central cavity cross-bridges into HbS, ββ-sebacyl [between the two Lys-82(β) residues] and αα-fumaryl [between the two Lys-99(α) residues], and investigated their influence on the polymerization of the deoxy protein. The O2 affinities of the cross-bridged HbS exhibited sensitivity toward the buffer ions and pH in a cross-link-specific fashion. The modulation of the O2 affinity of these cross-bridged HbS in the presence of allosteric effectors, DPG and L-35, is also very distinct, reflecting the differences in the conformational features these two cross-bridges induce within the central cavity at the respective effector-binding domains. In addition, the αα-fumaryl cross bridge inhibited the polymerization, reflecting the perturbation of the microenvironment of one or more intermolecular contact residues, protein surface residues, as a consequence of the central cavity cross-bridge. On the other hand, the ββ-sebacyl cross-bridge exerted a slight potentiating effect on the polymerization of HbS. This reflects the fact that the perturbations at the protein surface are limited and favor polymerization. The results presented demonstrate that the structural changes induced by the central cavity cross-bridges are very specific and not simply restricted to the sites of modification, but are propagated to distant sites/domains, both within and outside the central cavity. It is conceivable that other surface regions that are not involved in the polymerization could also experience similar structural/conformational consequences. These results should be taken into consideration in designing intramolecularly cross-bridged asymmetric hybrid HbS for mapping the contribution of the intermolecular contact residues in the cis and trans dimers of deoxy HbS during polymerization.  相似文献   
50.
Bacterial peptidoglycan (PG or murein) is a single, large, covalently cross‐linked macromolecule and forms a mesh‐like sacculus that completely encases the cytoplasmic membrane. Hence, growth of a bacterial cell is intimately coupled to expansion of murein sacculus and requires cleavage of pre‐existing cross‐links for incorporation of new murein material. Although, conceptualized nearly five decades ago, the mechanism of such essential murein cleavage activity has not been studied so far. Here, we identify three new murein hydrolytic enzymes in Escherichia coli, two (Spr and YdhO) belonging to the NlpC/P60 peptidase superfamily and the third (YebA) to the lysostaphin family of proteins that cleave peptide cross‐bridges between glycan chains. We show that these hydrolases are redundantly essential for bacterial growth and viability as a conditional mutant lacking all the three enzymes is unable to incorporate new murein and undergoes rapid lysis upon shift to restrictive conditions. Our results indicate the step of cross‐link cleavage as essential for enlargement of the murein sacculus, rendering it a novel target for development of antibacterial therapeutic agents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号