首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   316篇
  免费   25篇
  2023年   1篇
  2022年   1篇
  2021年   7篇
  2020年   3篇
  2019年   3篇
  2018年   4篇
  2017年   7篇
  2016年   8篇
  2015年   15篇
  2014年   20篇
  2013年   21篇
  2012年   24篇
  2011年   15篇
  2010年   14篇
  2009年   16篇
  2008年   20篇
  2007年   19篇
  2006年   16篇
  2005年   18篇
  2004年   17篇
  2003年   10篇
  2002年   10篇
  2001年   4篇
  2000年   7篇
  1999年   4篇
  1998年   7篇
  1997年   3篇
  1996年   2篇
  1995年   4篇
  1994年   3篇
  1993年   1篇
  1992年   5篇
  1991年   4篇
  1990年   6篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1983年   2篇
  1981年   3篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有341条查询结果,搜索用时 20 毫秒
201.
This study investigated the effects of combined supplementation with vitamin E and C against oxidative stress (OS) caused by intermittent cold exposure (ICE) in the hypothalamus (HY) of aging male Wistar rats [adult (3-months), middle-aged (18-months) and old (24-months)]. Each age was divided into sub-groups: control (CON), cold-exposed at 10 °C (C10), cold-exposed at 5 °C (C5), supplemented control (CON+S) and supplemented cold-exposed at either 5 °C (C5+S) or 10 °C (C10+S). The supplement was a daily dose of 400 mg vitamin C and 50 IU of vitamin E/kg body weight. Cold exposure lasted 2 h/day for 4 weeks. All age groups exposed to cold showed increase in body mass and feeding efficiency. Feeding efficiency in the supplemented old group showed a statistically significant increase in the cold (p < 0.001). Age-related increases in levels of hydrogen peroxide (H2O2), protein carbonyl (PrC), advanced oxidation protein products and thiobarbituric acid reactive substances (TBARS) were further increased by cold in the HY. Cold reduced thiol(P-SH) levels and increased superoxide dismutase (SOD) and, catalase (CAT) activities as well as Hsp72 levels. However, supplementation lowered H2O2, PrC and TBARS with decreases in Hsp72 levels and in SOD and CAT activities. These changes were concomitant with elevations in P-SH, vitamin E and C levels. The results show that the OS caused by ICE in the HY and its subsequent protection following supplementation is related to the intensity of ICE as well as age of the animal. Immunohistochemical studies are underway to examine the findings on ICE-induced oxidative injury in the HY, and the prospects for vitamin E and C supplementation in the senescent.  相似文献   
202.
Several series of compounds containing the 1,4-dioxo-2-butenyl moiety have been prepared as candidate cytotoxins, including the methyl N-arylmaleamates, methyl N-arylfumaramates, and N-arylmaleimides. In addition, the N-arylisomaleimides were synthesized which are the structural isomers of N-arylmaleimides. These compounds were evaluated against human Molt 4/C8 and CEM T-lymphocytes as well as murine L1210 cells. Methyl N-arylfumaramates showed the highest cytotoxic potencies and, in particular, methyl N-(3,4-dichlorophenyl)fumaramate is six times more potent than melphalan towards L1210 cells and is equipotent with this drug in the Molt 4/C8 assay. Electrophilicity of compounds under investigation was demonstrated by carrying out thiolation using model benzyl mercaptan on representative compounds. Methyl N-(3,4-dichlorophenyl)fumaramate and methyl N-(4-chlorophenyl)maleamate inhibited human N-myristoyltransferase, a possible molecular target, in high micromolar range. QSAR and molecular modeling revealed some correlations between different structural features of a number of the molecules and cytotoxic potencies. Methyl N-arylfumaramates were well tolerated in mice in comparison to the analogs in other series of compounds tested. The data obtained in this investigation affords guidelines for preparing new series of molecules with greater potencies.  相似文献   
203.
A number of novel indomethacin glycolamide esters were synthesized and tested for their cyclooxygenase (COX-1 and COX-2) inhibition properties in vitro. Many of these compounds proved to be selective COX-2 inhibitors, and subtle structural changes in the substituents on the glycolamide ester moiety altered the inhibitory properties as well as potencies significantly. Their in vitro data were rationalized through molecular modeling studies. Few of them displayed anti-inflammatory activity in vivo. Compound 32, [1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl]acetic acid 2-morpholin-4-yl-2-oxo ethyl ester, was identified as a promising compound in this class and its good anti-inflammatory activity was demonstrated in the in vivo model.  相似文献   
204.
Protein kinase C (PKC) phosphorylates the NR1 and NR2A subunits of NMDARs at consensus sites located within their intracellular C-terminal tails. However, the functional consequences of these biochemical events are not well understood. In HEK293 cells expressing NR1/NR2A, activation of endogenous PKC by 4beta-phorbol 12-myristate 13-acetate (PMA) increased NMDAR desensitization as evidenced by a reduced steady-state current without any change in peak. The effects of PMA on NMDAR-mediated responses were prevented by specific PKC inhibitors and were not mimicked by an inactive enantiomer of PMA. The effects of PMA were preserved despite mutagenesis of the major PKC sites on the NR1 subunit (S889A, S890A, S896A and S897A) or removal of the entire NR1 C-terminal tail (NR1(stop838)). When co-expressing NR1(stop838)/NR2A the effects of PMA could only be observed with agonist concentrations sufficient to induce glycine-insensitive desensitization. Moreover, the effects of PMA were observed in receptors composed of NR1/NR2A and NR1/NR2B, but not NR1/NR2C, a subunit combination in which desensitization is absent. The NR2 subunit dependence suggested that the actions of PMA might require specific PKC sites previously identified within NR2A. However, a C-terminal truncated form of NR2A (NR2A(stop905)) remained responsive to PMA. We conclude that activation of PKC increases NMDAR glycine-insensitive desensitization independently of previously identified sites located within the NR1 C-terminus and distal segment of the NR2A C-terminus.  相似文献   
205.
206.
207.
Antioxidants are substances that fight against ROS (reactive oxygen species) and protect the cells from their damaging effects. Production of ROS during cellular metabolism is balanced by their removal by antioxidants. Any condition leading to increased levels of ROS results in oxidative stress, which promotes a large number of human diseases, including cancer. Therefore antioxidants may be regarded as potential anticarcinogens, as they may slow down or prevent development of cancer by reducing oxidative stress. Fruits and vegetables are rich source of antioxidants. Moreover, a number of phytochemicals present in medicinal plants are known to possess antioxidant activity. Therefore the aim of the present study was to investigate antioxidant activity of the aqueous extract of nuts of the medicinal plant Semecarpus anacardium in AKR mouse liver during the development of lymphoma. Antioxidant action was monitored by the activities of antioxidant enzymes catalase, superoxide dismutase and glutathione transferase. The effect of S. anacardium was also studied by observing the activity of LDH (lactate dehydrogenase), an enzyme of anaerobic metabolism. LDH activity serves as a tumour marker. The activities of antioxidant enzymes decreased gradually as lymphoma developed in mouse. However, LDH activity increased progressively. Administration of the aqueous extract of S. anacardium to lymphoma-transplanted mouse led to an increase in the activities of antioxidant enzymes, whereas LDH activity decreased significantly, indicating a decrease in carcinogenesis. The aqueous extract was found to be more effective than doxorubicin, a classical anticarcinogenic drug, with respect to its action on antioxidant enzymes and LDH in the liver of mice with developing lymphomas.  相似文献   
208.
In 1997, we identified a novel peptide, catestatin (CST: bovine chromogranin A [CHGA]???????: RSMRLSFRARGYGFRGPGLQL; human CHGA???????: SSMKLSFRARGYGFRGPGPQL), which is a potent inhibitor of nicotinic-cholinergic-stimulated catecholamine secretion. CST shows characteristic inhibitory effects on nicotinic cationic (Na+, Ca2+) signal transduction, which are specific to the neuronal nicotinic receptor. Utilizing systematic polymorphism discovery at the human CHGA locus we discovered three human variants of CST: G3??S, P3??L, and R3??Q that showed differential potencies towards the inhibition of catecholamine secretion. In humans, CHGA is elevated and its processing to CST is diminished in hypertension. Diminished CST is observed not only in hypertensive individuals but also in the early-normotensive offspring of patients with hypertension, suggesting that an early deficiency of CST might play a pathogenic role in the subsequent development of the disease. Consistent with human findings, prevention of endogenous CST expression by targeted ablation (knockout) of the mouse Chga locus (Chga-KO) resulted in severe hypertension that can be "rescued" specifically by replacement of the CST peptide. CST acts directly on the heart to inhibit the inotropic and lusitropic properties of the rodent heart and also acts as a potent vasodilator in rats and humans. While the G3??S CST variant caused profound changes in human autonomic activity and seemed to reduce the risk of developing hypertension, CST replacement rescued Chga-KO mice from dampened baroreflex sensitivity. In addition, CST has been shown to induce chemotaxis and acts as an antimicrobial as well as an antimalarial peptide. The present review summarizes these multiple actions of CST.  相似文献   
209.
210.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号