首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1014篇
  免费   45篇
  2024年   3篇
  2023年   6篇
  2022年   14篇
  2021年   45篇
  2020年   28篇
  2019年   25篇
  2018年   39篇
  2017年   29篇
  2016年   38篇
  2015年   44篇
  2014年   53篇
  2013年   72篇
  2012年   99篇
  2011年   81篇
  2010年   55篇
  2009年   52篇
  2008年   79篇
  2007年   62篇
  2006年   44篇
  2005年   36篇
  2004年   41篇
  2003年   32篇
  2002年   23篇
  2001年   7篇
  2000年   8篇
  1999年   4篇
  1998年   5篇
  1997年   6篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1992年   4篇
  1991年   4篇
  1990年   3篇
  1989年   3篇
  1987年   1篇
  1986年   1篇
  1981年   1篇
  1980年   2篇
  1976年   1篇
  1975年   1篇
排序方式: 共有1059条查询结果,搜索用时 281 毫秒
81.
Genetic individuality is the foundation of personalized medicine, yet its determinants are currently poorly understood. One issue is the difference between monozygotic twins that are assumed identical and have been extensively used in genetic studies for decades. Here, we report genome-wide alterations in two nuclear families each with a pair of monozygotic twins discordant for schizophrenia evaluated by the Affymetrix 6.0 human SNP array. The data analysis includes characterization of copy number variations (CNVs) and single nucleotide polymorphism (SNPs). The results have identified genomic differences between twin pairs and a set of new provisional schizophrenia genes. Samples were found to have between 35 and 65 CNVs per individual. The majority of CNVs (~80%) represented gains. In addition, ~10% of the CNVs were de novo (not present in parents), of these, 30% arose during parental meiosis and 70% arose during developmental mitosis. We also observed SNPs in the twins that were absent from both parents. These constituted 0.12% of all SNPs seen in the twins. In 65% of cases these SNPs arose during meiosis compared to 35% during mitosis. The developmental mitotic origin of most CNVs that may lead to MZ twin discordance may also cause tissue differences within individuals during a single pregnancy and generate a high frequency of mosaics in the population. The results argue for enduring genome-wide changes during cellular transmission, often ignored in most genetic analyses.  相似文献   
82.

Background

Human serum paraoxonase-1 (PON1) prevents oxidation of low density lipoprotein cholesterol (LDL-C) and hydrolyzes the oxidized form, therefore preventing the development of atherosclerosis. The polymorphisms of PON1 gene are known to affect the PON1 activity and thereby coronary artery disease (CAD) risk. As studies are lacking in North-West Indian Punjabi''s, a distinct ethnic group with high incidence of CAD, we determined PON1 activity, genotypes and haplotypes in this population and correlated them with the risk of CAD.

Methodology/Principal Findings

350 angiographically proven (≥70% stenosis) CAD patients and 300 healthy controls were investigated. PON1 activity was determined towards paraoxon (Paraoxonase; PONase) and phenylacetate (Arylesterase; AREase) substrates. In addition, genotyping was carried out by using multiplex PCR, allele specific oligonucleotide –PCR and PCR-RFLP methods and haplotyping was determined by PHASE software. The serum PONase and AREase activities were significantly lower in CAD patients as compared to the controls. All studied polymorphisms except L55M had significant effect on PONase activity. However AREase activity was not affected by them. In a logistic regression model, after adjustment for the conventional risk factors for CAD, QR (OR: 2.73 (1.57–4.72)) and RR (OR, 16.24 (6.41–41.14)) genotypes of Q192R polymorphism and GG (OR: 2.07 (1.02–4.21)) genotype of −162A/G polymorphism had significantly higher CAD risk. Haplotypes L-T-G-Q-C (OR: 3.25 (1.72–6.16)) and L-T-G-R-G (OR: 2.82 (1.01–7.80)) were also significantly associated with CAD.

Conclusions

In conclusion this study shows that CAD patients had lower PONase and AREase activities as compared to the controls. The coding Q192R polymorphism, promoter −162A/G polymorphism and L-T-G-Q-C and L-T-G-R-G haplotypes are all independently associated with CAD.  相似文献   
83.
Antibody-targeted chemotherapy with immunoconjugates of calicheamicin is a clinically validated strategy in cancer therapy. This study describes the selection of a murine anti-CD22 mAb, m5/44, as a targeting agent, its conjugation to a derivative of calicheamicin (CalichDM) via either acid-labile or acid-stable linkers, the antitumor activity of CalichDM conjugated to m5/44, and its subsequent humanization by CDR grafting. Murine IgG1 mAb m5/44 was selected based on its subnanomolar affinity for CD22 and ability to be internalized into B cells. CalichDM conjugated to m5/44 caused potent growth inhibition of CD22+ human B-cell lymphomas (BCLs) in vitro. The conjugate of m5/44 with an acid-labile linker was more potent than an acid-stable conjugate, a nonbinding conjugate with a similar acid-labile linker, or unconjugated CalichDMH in inhibiting BCL growth. CalichDM conjugated to m5/44 caused regression of established BCL xenografts in nude mice. In contrast, both unconjugated m5/44 and a nonbinding conjugate were ineffective against these xenografts. Based on the potent antitumor activity of m5/44-CalichDM conjugates, m5/44 was humanized by CDR grafting to create g5/44, an IgG4 anti-CD22 antibody. Both m5/44 and g5/44 bound CD22 with subnanomolar affinity. Competitive blocking with previously characterized murine anti-CD22 mAbs suggested that g5/44 recognizes epitope A located within the first N-terminal Ig-like domain of human CD22. Antitumor efficacy of CalichDM conjugated to g5/44 against BCL xenografts was more potent than its murine counterpart. Based on these results, a calicheamicin conjugate of g5/44, CMC-544, was selected for further development as a targeted chemotherapeutic agent for the treatment of B-cell malignancies.Abbreviations AcBut 4-(4-Acetylphenoxy) butanoic acid - AcPAc (3-Acetylphenyl) acetic acid - ATC Antibody-targeted chemotherapy - BCL B-cell lymphoma - CalichDM N-Acetyl--calicheamicin dimethyl disulfide derivative(s) - CalichDMA CalichDM acid - CalichDMH CalichDM hydrazide - CDR Complementarity determining region - NHL Non-Hodgkins lymphoma - PBMC Peripheral blood mononuclear cell - TAA Tumor-associated antigen  相似文献   
84.
Dixit K  Moinuddin  Ali A 《Life sciences》2005,77(21):2626-2642
Peroxynitrite (ONOO(-)) is a strong and potent oxidizing and nitrating agent, formed by rapid reaction of two highly reactive, nitric oxide and superoxide anion. The action of peroxynitrite generated by synergistic action of diethylamine NONOate (a nitric oxide donor) and 1,4-hydroquinone (a superoxide donor), on human placental DNA was monitored by ultraviolet and fluorescence spectroscopy, melting temperature studies, S1 nuclease digestibility and alkaline agarose electrophoresis. The peroxynitrite modified human DNA (ONOO(-)-DNA) was found to be highly immunogenic in rabbits inducing high titre immunogen specific antibodies. However, the induced antibodies exhibited appreciable cross-reactivity with various polynucleotides and nucleic acids. The data demonstrate that the antibodies, though cross-reactive, preferentially bind ONOO(-)-modified epitopes on DNA. Visual detection of immune complex formation with native and ONOO(-)-DNA reiterated preferential binding with modified human DNA. DNA modified by ONOO(-) presents unique epitopes which may be one of the factors for the induction of autoantibodies in cancer patients.  相似文献   
85.
Summary Transfer of genes from heterologous species provides the means of selectively introducing new traits into crop plants and expanding the gene pool beyond what has been available to traditional breeding systems. With the recent advances in genetic engineering of plants, it is now feasible to introduce into crop plants, genes that have previously been inaccessible to the conventional plant breeder, or which did not exist in the crop of interest. This holds a tremendous potential for the genetic enhancement of important food crops. However, the availability of efficient transformation methods to introduce foreign DNA can be a substantial barrier to the application of recombinant DNA methods in some crop plants. Despite significant advances over the past decades, development of efficient transformation methods can take many years of painstaking research. The major components for the development of transgenic plants include the development of reliable tissue culture regeneration systems, preparation of gene constructs and efficient transformation techniques for the introduction of genes into the crop plants, recovery and multiplication of transgenic plants, molecular and genetic characterization of transgenic plants for stable and efficient gene expression, transfer of genes to elite cultivars by conventional breeding methods if required, and the evaluation of transgenic plants for their effectiveness in alleviating the biotic and abiotic stresses without being an environmental biohazard. Amongst these, protocols for the introduction of genes, including the efficient regeneration of shoots in tissue cultures, and transformation methods can be major bottlenecks to the application of genetic transformation technology. Some of the key constraints in transformation procedures and possible solutions for safe development and deployment of transgenic plants for crop improvement are discussed.  相似文献   
86.
Short-term outcomes following organ transplantation have improved considerably since the availability of cyclosporine ushered in the modern era of immunosuppression. In spite of this, many of the current limitations to progress in the field are directly related to the existing practice of relatively non-specific immunosuppression. These include increased risks of opportunistic infection and cancer, and toxicity associated with long-term immunosuppressive drug exposure. In addition, long-term graft loss continues to result in part from a failure to adequately control the anti-donor immune response. The development of a safe and reliable means of inducing tolerance would ameliorate these issues and improve the lives of transplant recipients, yet given the improving clinical standard of care, the translation of new therapies has become appropriately more cautious and dependent on increasingly predictive preclinical models. While convenient and easy to use, rodent tolerance models have not to date been reliably capable of predicting a therapy's potential efficacy in humans. Non-human primates possess an immune system that more closely approximates that found in humans, and have served as a more rigorous preclinical testing ground for novel therapies. Prior to clinical adaptation therefore, tolerance regimens should be vetted in non-human primates to ensure that there is sufficient potential for efficacy to justify the risk of its application.  相似文献   
87.
Mutations in alpha-synuclein, Parkin, and UCH-L1 cause heritable forms of Parkinson disease. Unlike alpha-synuclein, for which no precise biochemical function has been elucidated, Parkin functions as a ubiquitin E3 ligase, and UCH-L1 is a deubiquitinating enzyme. The E3 ligase activity of Parkin in Parkinson disease is poorly understood and is further obscured by the fact that multiubiquitin chains can be formed through distinct types of linkages that regulate diverse cellular processes. For instance, ubiquitin lysine 48-linked multiubiquitin chains target substrates to the proteasome, whereas ubiquitin lysine 63-linked chains control ribosome function, protein sorting and trafficking, and endocytosis of membrane proteins. It is notable in this regard that ubiquitin lysine 63-linked chains promote the degradation of membrane proteins by the lysosome. Because both Parkin and alpha-synuclein can regulate the activity of the dopamine transporter, we investigated whether they influenced ubiquitin lysine 63-linked chain assembly. These studies revealed novel biochemical activities for both Parkin and alpha-synuclein. We determined that Parkin functions with UbcH13/Uev1a, a dimeric ubiquitin-conjugating enzyme, to assemble ubiquitin lysine 63-linked chains. Our results and the results of others indicate that Parkin can promote both lysine 48- and lysine 63-linked ubiquitin chains. alpha-Synuclein also stimulated the assembly of lysine 63-linked ubiquitin chains. Because UCH-L1, a ubiquitin hydrolase, was recently reported to form lysine 63-linked conjugates, it is evident that three proteins that are genetically linked to Parkinson disease can contribute to lysine 63 multiubiquitin chain formation.  相似文献   
88.
Microtubule-associated protein tau is the major component of the neurofibrillary tangles of Alzheimer disease (AD) and is genetically linked to frontotemporal dementias (FTDP-17). We have recently shown that tau interacts with the SH3 domain of Fyn, an Src family non-receptor tyrosine kinase, and is tyrosine-phosphorylated by Fyn on Tyr-18. Also, tyrosine-phosphorylated tau is present in the neuropathology of AD. To determine whether alterations in the tau-Fyn interaction might correlate with disease-related factors in AD and FTDP-17, we have performed real-time surface plasmon resonance studies on a panel of 21 tau constructs with Fyn SH3. We report that the interaction between Fyn SH3 and 3R-tau was 20-fold higher than that with 4R-tau. In addition, the affinity between 4R-tau and Fyn SH3 was increased 25-45-fold by phosphorylation-mimicking mutations or by FTDP-17 mutations. In vitro kinase reactions show that tau, with lower affinity SH3 interactions, exhibited a lower level of Tyr-18 phosphorylation under our reaction conditions. Lastly, we have demonstrated that tau is phosphorylated on Tyr-18 in the tau P301L mouse model for tauopathy (JNPL3). In summary, our results suggest that disease-related phosphorylation and missense mutations of tau increase association of tau with Fyn. Because these effects are mediated through the 4R component of the tau population, these results also have implications for the FTDP-17 diseases caused by increased expression of 4R-tau. Our data support a role for the Fyn-tau interaction in neurodegeneration.  相似文献   
89.
Maximum antiinflammatory activity of phytic acid (PA) was seen at an oral dose of 150 mg/kg in the carrageenan induced rat paw edema model. Although PA showed ability to prevent denaturation of proteins, it showed less antiinflammatory activity than ibuprofen. Ability of PA to bring down thermal denaturation of proteins might be a contributing factor in the mechanism of action against inflammation. PA, at all the doses tested, showed significant protection from ulcers induced by ibuprofen, ethanol and cold stress, with a maximum activity at 150 mg/kg. There was a significant increase in gastric tissue malondialdehyde levels in ethanol treated rats but these levels decreased following PA pretreatment. Moreover, pretreatment with PA significantly inhibited various effects of ethanol on gastric mucosa, such as, reduction in the concentration of nonprotein sulfhydryl groups, necrosis, erosions, congestion and hemorrhage. These results suggested that gastro-protective effect of PA could be mediated by its antioxidant activity and cytoprotection of gastric mucosa.  相似文献   
90.
Accurate chromosome alignment at metaphase and subsequent segregation of condensed chromosomes is a complex process involving elaborate and only partially characterized molecular machinery. Although several spindle associated molecular motors have been shown to be essential for mitotic function, only a few chromosome arm--associated motors have been described. Here, we show that human chromokinesin human HKIF4A (HKIF4A) is an essential chromosome-associated molecular motor involved in faithful chromosome segregation. HKIF4A localizes in the nucleoplasm during interphase and on condensed chromosome arms during mitosis. It accumulates in the mid-zone from late anaphase and localizes to the cytokinetic ring during cytokinesis. RNA interference--mediated depletion of HKIF4A in human cells results in defective prometaphase organization, chromosome mis-alignment at metaphase, spindle defects, and chromosome mis-segregation. HKIF4A interacts with the condensin I and II complexes and HKIF4A depletion results in chromosome hypercondensation, suggesting that HKIF4A is required for maintaining normal chromosome architecture. Our results provide functional evidence that human KIF4A is a novel component of the chromosome condensation and segregation machinery functioning in multiple steps of mitotic division.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号