首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   239篇
  免费   15篇
  2023年   3篇
  2022年   6篇
  2021年   8篇
  2020年   6篇
  2019年   9篇
  2018年   8篇
  2017年   7篇
  2016年   7篇
  2015年   14篇
  2014年   21篇
  2013年   22篇
  2012年   15篇
  2011年   21篇
  2010年   16篇
  2009年   8篇
  2008年   6篇
  2007年   10篇
  2006年   9篇
  2005年   5篇
  2004年   7篇
  2003年   7篇
  2002年   4篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1989年   6篇
  1988年   1篇
  1984年   2篇
  1983年   2篇
  1979年   4篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1972年   3篇
排序方式: 共有254条查询结果,搜索用时 542 毫秒
21.
22.
Regulation of DJ1 is associated with a number of human diseases. To determine the involvement of DJ1 in progression of diabetes in a gender‐dependent manner, we investigated its tissue‐specific expression in streptozotocin (STZ)‐induced diabetic male and female rats in this study. In animal experiments, females showed greater susceptibility towards developing diabetes because of lower insulin secretion and higher blood glucose levels as compared to male diabetic rats upon exposure to STZ. Immunoblotting confirmed sexually dimorphic regulation of DJ1 in various metabolic tissues such as the liver, pancreas and skeletal muscle. Immunofluorescence analysis revealed the location as well as reinforced the gender‐dependent expression of DJ1 in hepatic tissue. Co‐immunoprecipitation assay identified several interacting proteins with DJ1 whose functions were shown to be involved in various metabolic pathways viz. antioxidative and stress defence system, protein and methionine metabolism, nitrogen metabolism, urea metabolism, etc. Using GeneMANIA, a predictive web interface for gene functions, we showed for the first time that DJ1 may regulate T1DM via the JNK1 pathway, suggesting DJ1 interacts with other proteins from various metabolic pathways. We anticipate that the current data will provide insights into the aetiology of T1DM.  相似文献   
23.
Allelic replacement mutants were constructed within arginine deiminase (arcA1 and arcA2) to assess the function of the arginine deiminase (ADI) pathway in organic acid resistance and biofilm formation of Staphylococcus epidermidis 1457. A growth-dependent acidification assay (pH ∼5.0 to ∼5.2) determined that strain 1457 devoid of arginine deiminase activity (1457 ΔADI) was significantly less viable than the wild type following depletion of glucose and in the presence of arginine. However, no difference in viability was noted for individual 1457 ΔarcA1 (native) or ΔarcA2 (arginine catabolic mobile element [ACME]-derived) mutants, suggesting that the native and ACME-derived ADIs are compensatory in S. epidermidis. Furthermore, flow cytometry and electron paramagnetic resonance spectroscopy results suggested that organic acid stress resulted in oxidative stress that could be partially rescued by the iron chelator dipyridyl. Collectively, these results suggest that formation of hydroxyl radicals is partially responsible for cell death via organic acid stress and that ADI-derived ammonia functions to counteract this acid stress. Finally, static biofilm assays determined that viability, ammonia synthesis, and pH were reduced in strain 1457 ΔADI following 120 h of growth in comparison to strain 1457 and the arcA1 and arcA2 single mutants. It is hypothesized that ammonia synthesis via the ADI pathway is important to reduce pH stress in specific microniches that contain high concentrations of organic acids.  相似文献   
24.
25.
26.
27.
28.
Human induced pluripotent stem cells (iPSCs) are potential renewable sources of hepatocytes for drug development and cell therapy. Differentiation of human iPSCs into different developmental stages of hepatic cells has been achieved and improved during the last several years. We have recently demonstrated the liver engraftment and regenerative capabilities of human iPSC-derived multistage hepatic cells in vivo. Here we describe the in vitro and in vivo activities of hepatic cells derived from patientspecific iPSCs, including multiple lines established from either inherited or acquired liver diseases, and discuss basic and clinical applications of these cells for disease modeling, drug screening and discovery, gene therapy and cell replacement therapy.Key words: induced pluripotent stem cells (iPSCs), hepatic differentiation, liver ngraftment, disease modeling, drug testing, alpha-1 antitrypsin, liver cirrhosis, hepatocellular carcinoma, cell therapy  相似文献   
29.
Preterm birth is the major cause of neonatal death and serious morbidity. Most preterm births are due to spontaneous onset of labor without a known cause or effective prevention. Both maternal and fetal genomes influence the predisposition to spontaneous preterm birth (SPTB), but the susceptibility loci remain to be defined. We utilized a combination of unique population structures, family-based linkage analysis, and subsequent case-control association to identify a susceptibility haplotype for SPTB. Clinically well-characterized SPTB families from northern Finland, a subisolate founded by a relatively small founder population that has subsequently experienced a number of bottlenecks, were selected for the initial discovery sample. Genome-wide linkage analysis using a high-density single-nucleotide polymorphism (SNP) array in seven large northern Finnish non-consanginous families identified a locus on 15q26.3 (HLOD 4.68). This region contains the IGF1R gene, which encodes the type 1 insulin-like growth factor receptor IGF-1R. Haplotype segregation analysis revealed that a 55 kb 12-SNP core segment within the IGF1R gene was shared identical-by-state (IBS) in five families. A follow-up case-control study in an independent sample representing the more general Finnish population showed an association of a 6-SNP IGF1R haplotype with SPTB in the fetuses, providing further evidence for IGF1R as a SPTB predisposition gene (frequency in cases versus controls 0.11 versus 0.05, P = 0.001, odds ratio 2.3). This study demonstrates the identification of a predisposing, low-frequency haplotype in a multifactorial trait using a well-characterized population and a combination of family and case-control designs. Our findings support the identification of the novel susceptibility gene IGF1R for predisposition by the fetal genome to being born preterm.  相似文献   
30.
Accurate chromosome alignment at metaphase and subsequent segregation of condensed chromosomes is a complex process involving elaborate and only partially characterized molecular machinery. Although several spindle associated molecular motors have been shown to be essential for mitotic function, only a few chromosome arm--associated motors have been described. Here, we show that human chromokinesin human HKIF4A (HKIF4A) is an essential chromosome-associated molecular motor involved in faithful chromosome segregation. HKIF4A localizes in the nucleoplasm during interphase and on condensed chromosome arms during mitosis. It accumulates in the mid-zone from late anaphase and localizes to the cytokinetic ring during cytokinesis. RNA interference--mediated depletion of HKIF4A in human cells results in defective prometaphase organization, chromosome mis-alignment at metaphase, spindle defects, and chromosome mis-segregation. HKIF4A interacts with the condensin I and II complexes and HKIF4A depletion results in chromosome hypercondensation, suggesting that HKIF4A is required for maintaining normal chromosome architecture. Our results provide functional evidence that human KIF4A is a novel component of the chromosome condensation and segregation machinery functioning in multiple steps of mitotic division.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号