首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   148篇
  免费   12篇
  2023年   1篇
  2022年   2篇
  2021年   4篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   6篇
  2016年   5篇
  2015年   10篇
  2014年   15篇
  2013年   8篇
  2012年   11篇
  2011年   13篇
  2010年   5篇
  2009年   7篇
  2008年   10篇
  2007年   10篇
  2006年   9篇
  2005年   7篇
  2004年   2篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1992年   4篇
  1991年   3篇
  1989年   2篇
  1986年   1篇
  1982年   1篇
  1980年   1篇
  1979年   2篇
  1966年   1篇
排序方式: 共有160条查询结果,搜索用时 625 毫秒
61.
During wound healing, hemidesmome disassembly enables keratinocyte migration and proliferation. Hemidesmosome dynamics are altered downstream of epidermal growth factor (EGF) receptor activation, following the phosphorylation of integrin β4 residues S1356 and S1364, which reduces the interaction with plectin; however, this event is insufficient to drive complete hemidesmome disassembly. In the studies reported here, we used a fluorescence resonance energy transfer-based assay to demonstrate that the connecting segment and carboxy-terminal tail of the β4 cytoplasmic domain interact, which facilitates the formation of a binding platform for plectin. In addition, analysis of a β4 mutant containing a phosphomimicking aspartic acid residue at T1736 in the C-tail suggests that phosphorylation of this residue regulates the interaction with the plectin plakin domain. The aspartic acid mutation of β4 T1736 impaired hemidesmosome formation in junctional epidermolysis associated with pyloric atresia/β4 keratinocytes. Furthermore, we show that T1736 is phosphorylated downstream of protein kinase C and EGF receptor activation and is a substrate for protein kinase D1 in vitro and in cells, which requires its translocation to the plasma membrane and subsequent activation. In conclusion, we identify T1736 as a novel phosphorylation site that contributes to the regulation of hemidesmome disassembly, a dynamically regulated process involving the concerted phosphorylation of multiple β4 residues.  相似文献   
62.
63.
The enigmatic fissure deposits of south‐western England and southern Wales are famous for their unique assemblage of Late Triassic vertebrates, although their age is contentious. While recent studies of palynomorphs have dated some as Rhaetian, their conchostracan (Crustacea, Branchiopoda) assemblages have not been described in detail nor used in biostratigraphy. We find that species determination of British Late Triassic conchostracans requires detailed observations of size, shape and ornamentation. We provide evidence that although Euestheria brodieana is invariably smaller than E. minuta, with some slight differences in carapace ornamentation, the traditional view that they are very similar is upheld. The use of conchostracans as a biostratigraphical tool is here tested by application to the British Triassic fissures at Cromhall quarry where the usual stratigraphical evidence provided by superposition is absent. We find no distinction between conchostracans from bedded Rhaetian deposits of the UK and specimens collected from the fissure deposits of Cromhall Quarry, Gloucestershire, supporting a late Rhaetian age for these deposits.  相似文献   
64.
Malate plays a central role in plant nutrition   总被引:5,自引:0,他引:5  
Schulze  J.  Tesfaye  M.  Litjens  R. H. M. G.  Bucciarelli  B.  Trepp  G.  Miller  S.  Samac  D.  Allan  D.  Vance  C. P. 《Plant and Soil》2002,247(1):133-139
Malate occupies a central role in plant metabolism. Its importance in plant mineral nutrition is reflected by the role it plays in symbiotic nitrogen fixation, phosphorus acquisition, and aluminum tolerance. In nitrogen-fixing root nodules, malate is the primary substrate for bacteroid respiration, thus fueling nitrogenase. Malate also provides the carbon skeletons for assimilation of fixed nitrogen into amino acids. During phosphorus deficiency, malate is frequently secreted from roots to release unavailable forms of phosphorus. Malate is also involved with plant adaptation to aluminum toxicity. To define the genetic and biochemical regulation of malate formation in plant nutrition we have isolated and characterized genes involved in malate metabolism from nitrogen-fixing root nodules of alfalfa and those involved in organic acid excretion from phosphorus-deficient proteoid roots of white lupin. Moreover, we have overexpressed malate dehydrogenase in alfalfa in attempts to improve nutrient acquisition. This report is an overview of our efforts to understand and modify malate metabolism, particularly in the legumes alfalfa and white lupin.  相似文献   
65.
White lupin (Lupinus albus L.) acclimates to phosphorus deficiency (–P) by the development of short, densely clustered lateral roots called proteoid (or cluster) roots. These specialized plant organs display increased exudation of citric and malic acid. The enhanced exudation of organic acids from P stressed white lupin roots is accompanied by increased in vitro phosphoenolpyruvate carboxylase (PEPC) and malate dehydrogenase (MDH) activity. Here we report the cloning of full-length white lupin PEPC and MDH cDNAs. RNA blot analysis indicates enhanced expression of these genes in –P proteoid roots, placing higher gene expression at the site of organic acid exudation. Correspondingly, macroarray analysis of about 1250 ESTs (expressed sequence tags) revealed induced expression of genes involved in organic acid metabolism in –P proteoid roots. In situ hybridization revealed that PEPC and MDH were both expressed in the cortex of emerging and mature proteoid rootlets. A C3 PEPC protein was partially purified from proteoid roots of P deficient white lupin. Native and subunit Mr were determined to be 440 kD and 110 kD, respectively. Citrate and malate were effective inhibitors of in vitro PEPC activity at pH 7. Addition of ATP partially relieved inhibition of PEPC by malate but had little effect on citrate inhibition. Taken together, the results presented here suggest that acclimation of white lupin to low P involves modified expression of plant genes involved in carbon metabolism.  相似文献   
66.
Despite their importance in cell biology, the mechanisms that maintain the nucleus in its proper position in the cell are not well understood. This is primarily the result of an incomplete knowledge of the proteins in the outer nuclear membrane (ONM) that are able to associate with the different cytoskeletal systems. Two related ONM proteins, nuclear envelope spectrin repeat (nesprin)-1 and -2, are known to make direct connections with the actin cytoskeleton through their NH2-terminal actin-binding domain (ABD). We have now isolated a third member of the nesprin family that lacks an ABD and instead binds to the plakin family member plectin, which can associate with the intermediate filament (IF) system. Overexpression of nesprin-3 results in a dramatic recruitment of plectin to the nuclear perimeter, which is where these two molecules are colocalized with both keratin-6 and -14. Importantly, plectin binds to the integrin alpha6beta4 at the cell surface and to nesprin-3 at the ONM in keratinocytes, suggesting that there is a continuous connection between the nucleus and the extracellular matrix through the IF cytoskeleton.  相似文献   
67.
68.
Summary In certain localities, R. minor and R. serotinus grow sympatrically and the flowering-periods overlap. The species hybridize but can still be recognized as distinct taxonomic entities. In the field s x m crosses can be expected to occur more frequently than the reverse, on the basis of flower morphology and pollinator (bumblebee) efficiency. Observation of pollen germination, pollen tube growth, seed set, and seed germination in artificial, reciprocal crosses permits the conclusion that a single m x s pollination leads to more offspring than a single s x m pollination. The two species are isolated from each other by a series of mechanisms none of which is 100% effective by itself, but their combined action comes close to that figure. The leakages in the ethological barrier against hybridization are closed, partly, by physiological mechanisms.  相似文献   
69.
Mesenchymal stem cells from human bone marrow (MSC) express mRNA encoding the L-type Ca2+ channel Ca v 1.2 alpha1 subunit (alpha(1)1.2). We now describe a splice variant including an alternative exon of 75 bp in the region between exons 9 and 10, which we identified in MSC by semi-quantitative RT-PCR. With primers specific for variants including (+9*) or excluding the 75 bp insertion (-9*), we found comparable mRNA expression patterns in MSC and in primary cultures of related connective tissue cells (chondrocytes, osteoblasts and fibroblasts). Since culture conditions might have altered variant expression, we investigated mRNA levels in various native human tissue samples (cartilage, bone, fat, liver, kidney, aorta, bladder, cardiac ventricle and atrium, CNS). We found highest levels of the +9* variant in aorta, containing smooth muscle and connective tissue cells, but the variant was expressed in all tissues. We therefore hypothesized that broad expression of +9* might be linked to the presence of vasculature and/or connective tissue structures, rather than to tissue-specific parenchymal cells (e.g. cardiomyocytes). To test this hypothesis we separated human atrium into a cardiomyocyte-enriched fraction and a cardiomyocyte-depleted fraction. RT-PCR demonstrated significantly larger levels of the +9* variant in the non-cardiomyocyte fraction. The result was even more clear in single cell RT-PCR experiments, where the +9* variant was undetectable in cardiomyocytes but present in non-cardiomyocytes. We conclude that the +9* variant is present in all human tissues investigated so far, and suggest that expression in human atrium is associated with vascular smooth muscle and/or connective tissue cells.  相似文献   
70.
Hepatocytes are highly polarised epithelial cells that mediate a large number of metabolic pathways, the transcellular movement of numerous ions and metabolites, and the secretion of proteins from both basal and canalicular membrane regions. Hormone-induced changes in the concentration of intracellular Ca2+ play a central role in regulating these functions. Store-operated Ca2+ channels (SOCs) and other Ca2+-permeable channels in the plasma membrane which are activated by hormones are essential for regulating the amount of Ca2+ in the hepatocyte in order to allow these Ca2+ signalling processes to occur. However, the properties of hormone-activated Ca2+ channels in hepatocytes and in other epithelial cells are not well defined. In this study, we have investigated SOCs in cultured rat hepatocytes by patch-clamp recording using IP3 and hormones as activators. We show that IP3 activates a single type of SOC, which, on the basis of its high selectivity for Ca2+ over Na+, inhibition by La3+ and 2-aminoethyl diphenylborate (2-APB), and the time course of fast inactivation, is very similar to CRAC channel in mast cells and lymphocytes. Moreover, a current (ISOC) with properties identical to those of the IP3-activated current can be activated by physiological concentrations of ATP and vasopressin. It is concluded that SOCs with properties similar to those of CRAC channel are present in hepatocytes, highly differentiated primary cells, and these channels can be activated by hormones under conditions close to physiological.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号