首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   740篇
  免费   45篇
  2023年   9篇
  2022年   18篇
  2021年   27篇
  2020年   27篇
  2019年   16篇
  2018年   28篇
  2017年   35篇
  2016年   40篇
  2015年   43篇
  2014年   51篇
  2013年   57篇
  2012年   92篇
  2011年   67篇
  2010年   38篇
  2009年   37篇
  2008年   35篇
  2007年   40篇
  2006年   36篇
  2005年   37篇
  2004年   17篇
  2003年   12篇
  2002年   8篇
  2001年   6篇
  2000年   2篇
  1999年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
排序方式: 共有785条查询结果,搜索用时 15 毫秒
781.
Increased antibacterial resistance (ABR) and limited drug discovery warrant optimized use of available antibiotics. One option is to rationally combine two antibiotics (fixed dose combination (FDC)) that may delay or prevent emergence of ABR in notorious pathogen. Major concern with FDC is the mutual interaction of its components that might influence their pharmacokinetic (PK) profile, requiring reassessing of whole formulation (adding cost and time). The interaction can be identified by comparing PK profile of a drug present in FDC with its independent entity. An open-label, crossover, single-dose comparative PK study of FDC (ceftriaxone and sulbactam) with their individual reference formulations was performed in 24 healthy adult subjects. No mutual PK interactions between ceftriaxone and sulbactam were observed. Pharmacokinetic data was used to develop a population-PK model to understand between-subject variability (BSV). Pharmacokinetics of ceftriaxone/sulbactam was explained by one and two compartment models, respectively. The subject’s “weight” was identified as a covariate explaining BSV. Both internal and external validations (healthy/infected subjects) were done. The model-derived population-PK parameters of FDC’s active components in infected subjects were similar to literature reported values of individual components. Efficacies of various FDC dosage regimens over a range of minimum inhibitory concentrations (MICs) were assessed by Monte Carlo simulations using population-PK parameters of infected/healthy subjects. In infected subjects, 3 g FDC/24 h can treat bacteria with MIC ≤8 μg/mL, while for MIC 8–32 μg/mL, 3 g FDC/12 h is recommended. Lastly, the developed population-PK model was successfully used to predict drug exposure in pediatric population.  相似文献   
782.
Skewing of the sex ratio towards males occurs in humans. The possible explanation for excess male births could be a preference for Y-bearing sperm at fertilization and/or selective elimination of female embryos during pregnancy. In this study, we have tested the sex ratio in the preimplantation embryo (2–3 cells stage/closest possible primary sex ratio), the post-implantation embryo (day E7.5), and at birth (secondary sex ratio) on a homogenous (genetic, environmental, and dietary) population of mice to ascertain the biological reason i.e., male preference at fertilization or female elimination during pregnancy or both. Primary sex ratio on early preimplantation embryos (2–3 cells stage) was studied on 598 embryos and secondary sex ratio (at birth) on 721 pups using PCR-based sexing (both X & Y chromosome-specific) besides sex ratio of 80 post-implantation embryos (day E7.5). We have also investigated whether the fat content (high & low) of the diet affects the sex ratio. We observed a skewed sex ratio (more female) in preimplantation embryos (0.436; 95 % CI 0.39, 0.48), and post-implantation embryos (0.462; 95 % CI 0.35, 0.57) but reverse skewing (more male) at birth (0.539; 95 % CI 0.5, 0.58). We also observed that high-fat diet promoted male sex ratio at birth (0.657; 95 % CI 0.57, 0.74) whereas a low-fat diet had the opposite effect (0.46; 95 % CI 0.36, 0.56) but no effect at fertilization (2–3 cells stage embryos). This indicates selective elimination of female embryo and fetus throughout pregnancy in mice, more so with a high-fat diet.  相似文献   
783.
Hemoglobins with diverse characteristics have been identified in all kingdoms of life. Their ubiquitous presence indicates that these proteins play important roles in physiology, though function for all hemoglobins are not yet established with certainty. Their physiological role may depend on their ability to bind ligands, which in turn is dictated by their heme chemistry. However, we have an incomplete understanding of the mechanism of ligand binding for these newly discovered hemoglobins and the measurement of their kinetic parameters depend on their coordination at the heme iron. To gain insights into their functional role, it is important to categorize the new hemoglobins into either penta- or hexa-coordinated varieties. We demonstrate that simple pH titration and absorbance measurements can determine the coordination state of heme iron atom in ferric hemoglobins, thus providing unambiguous information about the classification of new globins. This method is rapid, sensitive and requires low concentration of protein. Penta- and hexa-coordinate hemoglobins displayed distinct pH titration profiles as observed in a variety of hemoglobins. The pentacoordinate distal histidine mutant proteins of hexacoordinate hemoglobins and ligand-bound hexacoordinate forms of pentacoordinate hemoglobins reverse the pH titration profiles, thus validating the sensitivity of this spectroscopic technique.  相似文献   
784.
Three strains of Peptostreptococcus productus were tested for growth at the expense of methoxylated aromatic compounds. Strain M8A-18 (human fecal isolate) was unable to utilize methoxylated aromatic compounds. While the type strain ATCC 27340 (human septicemia isolate) was capable of minimal growth with methoxylated aromatic compounds, ATCC 35244 (sewage sludge isolate) displayed significant growth on methoxylated aromatic compounds. Methoxylated phenols, benzoates, benzyl alcohol and phenylacrylates supported the growth of ATCC 35244 and were O-demethylated to their respective hydroxylated derivatives. During O-methyl- or CO-dependent growth, the double bond of the acrylate side chain of certain methoxylated and non-methoxylated phenylacrylates was reduced. Although other aromatic substituent groups (-COOH and -CH3) were transformed during CO-dependent growth, in short-term growth studies, the aromatic ring was not subject to reduction or degradation. Of the three strains tested, only strain M8A-18 failed to grow at the expense of carbon monoxide (CO).  相似文献   
785.
The interaction of β-cyclodextrin (β-CD) with mixed bilayers composed of sphingomylein and cholesterol (Chol) above and below the accepted stable complexation ratio (67:33) was investigated. Membranes with the same (symmetric) and different (asymmetric) compositions in their inner and outer leaflets were deposited at surface pressures of 20, 30, and 40 mN/m at the solid-liquid interface. Using neutron reflectometry, membranes of various global molar ratios (defined as the sum of the molar ratios of the inner and outer leaflets), were characterized before and after β-CD was added to the subphase. The structure of bilayers with global molar ratios at or above the stable complexation ratio was unchanged by β-CD, indicating that β-CD is unable to remove sphingomyelin or complexed Chol. However, β-CD removed all uncomplexed Chol from bilayers composed of global molar ratios below the stable complexation ratio. The removal of Chol by β-CD was independent of the initial structure of the membranes as deposited, suggesting that asymmetric membranes homogenize by the exchange of molecules between leaflets. The interaction of β-CD with the aforementioned membranes was independent of the deposition surface pressure except for a symmetric 50:50 membrane deposited at 40 mN/m. The scattering from 50:50 bilayers with higher packing densities (deposited at 40 mN/m) was unaffected by β-CD, suggesting that the removal of Chol can depend on both the composition and packing density of the membrane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号