首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   622篇
  免费   41篇
  663篇
  2023年   5篇
  2022年   14篇
  2021年   15篇
  2020年   8篇
  2019年   10篇
  2018年   22篇
  2017年   5篇
  2016年   15篇
  2015年   30篇
  2014年   29篇
  2013年   38篇
  2012年   39篇
  2011年   44篇
  2010年   20篇
  2009年   25篇
  2008年   28篇
  2007年   31篇
  2006年   23篇
  2005年   22篇
  2004年   35篇
  2003年   26篇
  2002年   21篇
  2001年   17篇
  2000年   13篇
  1999年   10篇
  1998年   2篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1992年   9篇
  1991年   8篇
  1990年   7篇
  1989年   2篇
  1988年   4篇
  1987年   6篇
  1986年   5篇
  1985年   10篇
  1984年   5篇
  1983年   5篇
  1982年   6篇
  1981年   3篇
  1980年   3篇
  1979年   4篇
  1978年   2篇
  1977年   4篇
  1975年   6篇
  1974年   6篇
  1973年   2篇
  1960年   2篇
  1956年   2篇
排序方式: 共有663条查询结果,搜索用时 0 毫秒
71.
Silk moths are the best studied silk secreting insects and belong to the families Bombycidae and Saturniidae. The phylogenetic relationship between eleven silk producing insects was analyzed using the complete DNA sequence of the internal transcribed spacer DNA 1 locus. The PCR amplification and sequence analysis showed variation in length ranging from 138 bp (Antheraea polyphemus) to 911 bp (Hyalopora cecropia). Microsatellite sequences were found and was be used to distinguish Saturniidae and Bombycidae members. The nucleotide sequences were aligned manually and used for construction of phylogenetic trees based on Maximum parsimony and Maximum likelihood methods. The topology in both the approaches yielded a similar tree that supports the ancestral position of the Antheraea assama.  相似文献   
72.
Biofortification of bread wheat by the transfer of useful variability of high grain Fe and Zn from Aegilops kotschyi through induced homoeologous pairing is the most feasible approach to alleviate micronutrient malnutrition worldwide. Deficiency of chromosome 5B in interspecific hybrids allows homoeologous pairing and recombination of chromosomes of wheat with those of the related species. The interspecific hybrid plants without 5B chromosome showed much higher chromosome pairing than did the plants with 5B. The F1 plants without 5B chromosome were selected and repeatedly backcrossed with wheat cultivar PBW343. The chromosome number of BC2F1 plants ranged from 43 to 60 with several univalents and multivalents. Molecular markers and GISH analysis confirmed the introgression of U/S chromosomes of Ae. kotschyi and their fragments in wheat. The BC2F2 plants showed up to 125 % increase in Fe and 158 % increase in Zn compared to PBW343 with Lr24 and Yr36. Induced homoeologous pairing in the absence of 5B was found to be an effective approach for transfer of useful variability for enhanced grain Fe and Zn content for biofortification of wheat for high grain micronutrient content.  相似文献   
73.
Depolymerization of lignin biomass to its value-added chemicals and fuels is pivotal for achieving the goals for sustainable society, and therefore has acquired key interest among the researchers worldwide. A number of distinct approaches have evolved in literature for the deconstruction of lignin framework to its mixture of complex constituents in recent decades. Among the existing practices, special attention has been devoted for robust site selective chemical transformation in the complex structural frameworks of lignin. Despite the initial challenges over a period of time, oxidation and oxidative cleavage process of aromatic building blocks of lignin biomass toward the fine chemical synthesis and fuel generation has improved substantially. The development has improved in terms of cost effectiveness, milder reaction conditions, and purity of compound individuals. These aforementioned oxidative protocols mainly involve the breaking of C-C and C-O bonds of complex lignin frameworks. More precisely in the line with environmentally friendly greener approach, the catalytic oxidation/oxidative cleavage reactions have received wide spread interest for their mild and selective nature toward the lignin depolymerization. This mini-review aims to provide an overview of recent developments in the field of oxidative depolymerization of lignin under greener and environmentally benign conditions. Also, these oxidation protocols have been discussed in terms of scalability and recyclability as catalysts for different fields of applications.  相似文献   
74.
75.
The plants of pigeonpea (Cajanus cajan L.) cv. H77-216 were subjected to moderate [soil moisture content (SMC) = 7.3 ± 0.5 %] and severe (SMC = 4.3 ± 0.5 %) drought by withholding the irrigation at vegetative stage (45 d after sowing). The control plants were maintained at SMC of 11.0 ± 0.5 %. Half of the stressed plants were re-irrigated and their recovery was studied after 2 d. Leaf water potential, osmotic potential, and relative water content of leaf and root decreased significantly while a sharp rise in proline and total soluble sugars contents were noticed. Drought induced a significant increase in 1-aminocyclopropane 1-carboxylic acid (ACC) content and ACC oxidase activity which caused a considerable increase in ethylene evolution. Malondialdehyde content and relative stress injury were increased under drought whereas reverse was true for ascorbic acid content. The membrane integrity of roots decreased during stress and recovered on rehydration. The specific activity of total superoxide dismutase, ascorbate peroxidase, glutathione reductase, and glutathione transferase decreased to 37 – 78 %, 17 – 62 %, 29 – 36 % and 57 – 79 % at moderate and severe drought, respectively. The increase in activity of catalase and peroxidase could not overcome the accumulation of H2O2 content in the roots.  相似文献   
76.
Plasmodium vivax is responsible for the majority of malaria cases outside Africa. Unlike P. falciparum, the P. vivax life-cycle includes a dormant liver stage, the hypnozoite, which can cause infection in the absence of mosquito transmission. An effective vaccine against P. vivax blood stages would limit symptoms and pathology from such recurrent infections, and therefore could play a critical role in the control of this species. Vaccine development in P. vivax, however, lags considerably behind P. falciparum, which has many identified targets with several having transitioned to Phase II testing. By contrast only one P. vivax blood-stage vaccine candidate based on the Duffy Binding Protein (PvDBP), has reached Phase Ia, in large part because the lack of a continuous in vitro culture system for P. vivax limits systematic screening of new candidates. We used the close phylogenetic relationship between P. vivax and P. knowlesi, for which an in vitro culture system in human erythrocytes exists, to test the scalability of systematic reverse vaccinology to identify and prioritise P. vivax blood-stage targets. A panel of P. vivax proteins predicted to function in erythrocyte invasion were expressed as full-length recombinant ectodomains in a mammalian expression system. Eight of these antigens were used to generate polyclonal antibodies, which were screened for their ability to recognize orthologous proteins in P. knowlesi. These antibodies were then tested for inhibition of growth and invasion of both wild type P. knowlesi and chimeric P. knowlesi lines modified using CRISPR/Cas9 to exchange P. knowlesi genes with their P. vivax orthologues. Candidates that induced antibodies that inhibited invasion to a similar level as PvDBP were identified, confirming the utility of P. knowlesi as a model for P. vivax vaccine development and prioritizing antigens for further follow up.  相似文献   
77.
78.
Guanine-rich oligonucleotides existing in both DNA and RNA are able to fold into four-stranded DNA secondary structures via Hoogsteen type hydrogen-bonding, where four guanines self-assemble into a square planar arrangement, which, when stacked upon each other, results in the formation of higher-order structures called G-quadruplexes. Their distribution is not random; they are more frequently present at telomeres, proto-oncogenic promoters, introns, 5′- and 3′-untranslated regions, stem cell markers, ribosome binding sites and so forth and are associated with various biological functions, all of which play a pivotal role in various incurable diseases like cancer and cellular ageing. Several studies have suggested that G-quadruplexes could not regulate biological processes by themselves; instead, various proteins take part in this regulation and can be important therapeutic targets. There are certain limitations in using whole G4-protein for therapeutics purpose because of its high manufacturing cost, laborious structure prediction, dynamic nature, unavailability for oral administration due to its degradation in the gut and inefficient penetration to reach the target site because of the large size. Hence, biologically active peptides can be the potential candidates for therapeutic intervention instead of the whole G4-protein complex. In this review, we aimed to clarify the biological roles of G4s, how we can identify them throughout the genome via bioinformatics, the proteins interacting with G4s and how G4-interacting peptide molecules may be the potential next-generation ligands for targeting the G4 motifs located in biologically important regions.  相似文献   
79.
Journal of Biological Physics - Protein–protein interaction in solution strongly depends on dissolved ions and solution pH. Interaction among globular protein (bovine serum albumin, BSA),...  相似文献   
80.
BioMetals - A family of dioxidovanadium(V) complexes (1–4) of the type [Na(H2O)x]+[VVO2(HL1?4)]? (x?=?4, 4.5 and 7) where HL2? represents the dianionic form of...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号