首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   18篇
  2021年   3篇
  2020年   1篇
  2019年   3篇
  2017年   3篇
  2016年   5篇
  2015年   6篇
  2014年   10篇
  2013年   8篇
  2012年   8篇
  2011年   10篇
  2010年   2篇
  2009年   2篇
  2008年   4篇
  2007年   6篇
  2006年   4篇
  2005年   5篇
  2004年   7篇
  2003年   3篇
  2002年   5篇
  2001年   4篇
  2000年   1篇
  1999年   5篇
  1998年   1篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1991年   4篇
  1990年   1篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1978年   2篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
  1968年   2篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
  1964年   1篇
排序方式: 共有154条查询结果,搜索用时 15 毫秒
71.
Apical lumen formation is a key step during epithelial morphogenesis. The establishment of the apical lumen is a complex process that involves coordinated changes in plasma membrane composition, endocytic transport, and cytoskeleton organization. These changes are accomplished, at least in part, by the targeting and fusion of Rab11/FIP5‐containing apical endosomes with the apical membrane initiation site (AMIS). Although AMIS formation and polarized transport of Rab11/FIP5‐containing endosomes are crucial for the formation of a single apical lumen, the spatiotemporal regulation of this process remains poorly understood. Here, we demonstrate that the formation of the midbody during cytokinesis is a symmetry‐breaking event that establishes the location of the AMIS. The interaction of FIP5 with SNX18, which is required for the formation of apical endocytic carriers, is inhibited by GSK‐3 phosphorylation at FIP5‐T276. Importantly, we show that FIP5‐T276 phosphorylation occurs specifically during metaphase and anaphase, to ensure the fidelity and timing of FIP5‐endosome targeting to the AMIS during apical lumen formation.  相似文献   
72.
73.
Histone deacetylases (HDACs) have emerged as important targets for cancer treatment. HDAC-inhibitors (HDACis) are well tolerated in patients and have been approved for the treatment of patients with cutaneous T-cell lymphoma (CTCL). To improve the clinical benefit of HDACis in solid tumors, combination strategies with HDACis could be employed. In this study, we applied Analysis of Functional Annotation (AFA) to provide a comprehensive list of genes and pathways affected upon HDACi-treatment in prostate cancer cells. This approach provides an unbiased and objective approach to high throughput data mining. By performing AFA on gene expression data from prostate cancer cell lines DU-145 (an HDACi-sensitive cell line) and PC3 (a relatively HDACi-resistant cell line) treated with HDACis valproic acid or vorinostat, we identified biological processes that are affected by HDACis and are therefore potential treatment targets for combination therapy. Our analysis revealed that HDAC-inhibition resulted among others in upregulation of major histocompatibility complex (MHC) genes and deregulation of the mitotic spindle checkpoint by downregulation of genes involved in mitosis. These findings were confirmed by AFA on publicly available data sets from HDACi-treated prostate cancer cells. In total, we analyzed 375 microarrays with HDACi treated and non-treated (control) prostate cancer cells. All results from this extensive analysis are provided as an online research source (available at the journal’s website and at http://luigimarchionni.org/HDACIs.html). By publishing this data, we aim to enhance our understanding of the cellular changes after HDAC-inhibition, and to identify novel potential combination strategies with HDACis for the treatment of prostate cancer patients.  相似文献   
74.

Background  

Epigenetic reprogramming is critical for genome regulation during germ line development. Genome-wide demethylation in mouse primordial germ cells (PGC) is a unique reprogramming event essential for erasing epigenetic memory and preventing the transmission of epimutations to the next generation. In addition to DNA demethylation, PGC are subject to a major reprogramming of histone marks, and many of these changes are concurrent with a cell cycle arrest in the G2 phase. There is limited information on how well conserved these events are in mammals. Here we report on the dynamic reprogramming of DNA methylation at CpGs of imprinted loci and DNA repeats, and the global changes in H3K27me3 and H3K9me2 in the developing germ line of the domestic pig.  相似文献   
75.
76.

Introduction

Genetic and disease-related factors give rise to a wide spectrum of glucocorticoid (GC) sensitivity in rheumatoid arthritis (RA). In clinical practice, GC treatment is not adapted to these differences in GC sensitivity. In vitro assessment of GC sensitivity before the start of therapy could allow more individualized GC therapy. The aim of the study was to investigate the association between in vitro and in vivo GC sensitivity in RA.

Methods

Thirty-eight early and 37 established RA patients were prospectively studied. In vitro GC sensitivity was assessed with dexamethasone-induced effects on interleukin-2 (IL-2) and glucocorticoid-induced leucine zipper (GILZ) messenger RNA expression in peripheral blood mononuclear cells (PBMCs). A whole-cell dexamethasone-binding assay was used to measure number and affinity (1/KD) of glucocorticoid receptors (GRs).In vivo GC sensitivity was determined by measuring the disease activity score (DAS) and health assessment questionnaire disability index (HAQ-DI) score before and after 2 weeks of standardized GC treatment.

Results

GR number was positively correlated with improvement in DAS. IL-2-EC50 and GILZ-EC50 values both had weak near-significant correlations with clinical improvement in DAS in intramuscularly treated patients only. HAQ responders had lower GILZ-EC50 values and higher GR number and KD.

Conclusions

Baseline cellular in vitro glucocorticoid sensitivity is modestly associated with in vivo improvement in DAS and HAQ-DI score after GC bridging therapy in RA. Further studies are needed to evaluate whether in vitro GC sensitivity may support the development of tailor-made GC therapy in RA.  相似文献   
77.
78.
Trypsin inhibitory activity occurring in the vegetative portion of lucerne (Medicago sativa L.) comprised two heat-labile isoinhibitors with isoele  相似文献   
79.
Native perennial bioenergy crops can mitigate greenhouse gases (GHG) by displacing fossil fuels with renewable energy and sequestering atmospheric carbon (C) in soil and roots. The relative contribution of root C to net GHG mitigation potential has not been compared in perennial bioenergy crops ranging in species diversity and N fertility. We measured root biomass, C, nitrogen (N), and soil organic carbon (SOC) in the upper 90 cm of soil for five native perennial bioenergy crops managed with and without N fertilizer. Bioenergy crops ranged in species composition and were annually harvested for 6 (one location) and 7 years (three locations) following the seeding year. Total root biomass was 84% greater in switchgrass (Panicum virgatum L.) and a four‐species grass polyculture compared to high‐diversity polycultures; the difference was driven by more biomass at shallow soil depth (0–30 cm). Total root C (0–90 cm) ranged from 3.7 Mg C ha?1 for a 12‐species mixture to 7.6 Mg C ha?1 for switchgrass. On average, standing root C accounted for 41% of net GHG mitigation potential. After accounting for farm and ethanol production emissions, net GHG mitigation potential from fossil fuel offsets and root C was greatest for switchgrass (?8.4 Mg CO2e ha?1 yr?1) and lowest for high‐diversity mixtures (?4.5 Mg CO2e ha?1 yr?1). Nitrogen fertilizer did not affect net GHG mitigation potential or the contribution of roots to GHG mitigation for any bioenergy crop. SOC did not change and therefore did not contribute to GHG mitigation potential. However, associations among SOC, root biomass, and root C : N ratio suggest greater long‐term C storage in diverse polycultures vs. switchgrass. Carbon pools in roots have a greater effect on net GHG mitigation than SOC in the short‐term, yet variation in root characteristics may alter patterns in long‐term C storage among bioenergy crops.  相似文献   
80.
There is no generally accepted scientific theory for the causes of adolescent idiopathic scoliosis (AIS). As part of its mission to widen understanding of scoliosis etiology, the International Federated Body on Scoliosis Etiology (IBSE) introduced the electronic focus group (EFG) as a means of increasing debate on knowledge of important topics. This has been designated as an on-line Delphi discussion. The Statement for this debate was written by Dr WCW Chu and colleagues who examine the spinal cord to vertebral growth interaction during adolescence in scoliosis. Using the multi-planar reconstruction technique of magnetic resonance imaging they investigated the relative length of spinal cord to vertebral column including ratios in 28 girls with AIS (mainly thoracic or double major curves) and 14 age-matched normal girls. Also evaluated were cerebellar tonsillar position, somatosensory evoked potentials (SSEPs), and clinical neurological examination. In severe AIS compared with normal controls, the vertebral column is significantly longer without detectable spinal cord lengthening. They speculate that anterior spinal column overgrowth relative to a normal length spinal cord exerts a stretching tethering force between the two ends, cranially and caudally leading to the initiation and progression of thoracic AIS. They support and develop the Roth-Porter concept of uncoupled neuro-osseous growth in the pathogenesis of AIS which now they prefer to term ' asynchronous neuro-osseous growth'. Morphological evidence about the curve apex suggests that the spinal cord is also affected, and a 'double pathology' is suggested. AIS is viewed as a disorder with a wide spectrum and a common neuroanatomical abnormality namely, a spinal cord of normal length but short relative to an abnormally lengthened anterior vertebral column. Neuroanatomical changes and/or abnormal neural function may be expressed only in severe cases. This asynchronous neuro-osseous growth concept is regarded as one component of a larger concept. The other component relates to the brain and cranium of AIS subjects because abnormalities have been found in brain (infratentorial and supratentorial) and skull (vault and base). The possible relevance of systemic melatonin-signaling pathway dysfunction, platelet calmodulin levels and putative vertebral vascular biology to the asynchronous neuro-osseous growth concept is discussed. A biomechanical model to test the spinal component of the concept is in hand. There is no published research on the biomechanical properties of the spinal cord for scoliosis specimens. Such research on normal spinal cords includes movements (kinematics), stress-strain responses to uniaxial loading, and anterior forces created by the stretched cord in forward flexion that may alter sagittal spinal shape during adolescent growth. The asynchronous neuro-osseous growth concept for the spine evokes controversy. Dr Chu and colleagues respond to five other concepts of pathogenesis for AIS and suggest that relative anterior spinal overgrowth and biomechanical growth modulation may also contribute to AIS pathogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号