首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   222篇
  免费   41篇
  2022年   2篇
  2019年   2篇
  2017年   3篇
  2016年   3篇
  2015年   5篇
  2014年   12篇
  2013年   8篇
  2012年   10篇
  2011年   9篇
  2010年   6篇
  2009年   5篇
  2008年   16篇
  2007年   18篇
  2006年   9篇
  2005年   10篇
  2004年   8篇
  2003年   8篇
  2002年   9篇
  2001年   12篇
  2000年   3篇
  1999年   7篇
  1998年   10篇
  1997年   4篇
  1996年   5篇
  1995年   5篇
  1992年   7篇
  1991年   3篇
  1990年   2篇
  1989年   4篇
  1988年   6篇
  1987年   4篇
  1985年   3篇
  1983年   5篇
  1979年   5篇
  1977年   2篇
  1975年   3篇
  1974年   2篇
  1971年   1篇
  1969年   2篇
  1968年   5篇
  1966年   2篇
  1965年   1篇
  1960年   1篇
  1957年   1篇
  1954年   1篇
  1952年   1篇
  1931年   1篇
  1926年   1篇
  1924年   1篇
  1922年   1篇
排序方式: 共有263条查询结果,搜索用时 15 毫秒
51.
52.
Toxic endogenous or exogenous compounds can be inactivated by various conjugation reactions. Glucuronidation (i.e. conjugation with glucuronate) is especially important due to the large number of drugs and chemical carcinogens that are detoxified through this pathway. Stable and harmless glucuronides can be reactivated by enzymatic hydrolysis thus inhibitors of glucuronidase activity reduce the risk of chemical carcinogenesis. The aim of this study was to reveal whether this mechanism contributes to the anti-cancer effect of green tea flavanols, which has been shown in various animal models. Therefore, we investigated the effect of these polyphenols on deglucuronidation in rat liver microsomes and in Hepa 1c1c7 mouse hepatoma cells, using 4-methylumbelliferyl glucuronide as model substrate. Tea flavanols inhibited beta-glucuronidase in intact vesicles, where glucuronide transport across the microsomal membrane is rate-limiting, but were almost ineffective in permeabilized vesicles. Epigallocatechin gallate, the major green tea flavanol was shown to have a concentration-dependent inhibitory effect on both beta-glucuronidase activity and glucuronide transport in native vesicles. Epigallocatechin gallate also inhibited beta-glucuronidase activity in native Hepa 1c1c7 mouse hepatoma cells, while failed to affect the enzyme in alamethicin-permeabilized cells, where the endoplasmic membrane barrier was eliminated. Our findings indicate that tea flavanols inhibit deglucuronidation in the endoplasmic reticulum at the glucuronide transport stage. This phenomenon might potentially contribute to the cancer-preventing dietary or pharmacological effect attributed to these catechins.  相似文献   
53.
Previously we have demonstrated the presence of presynaptic nicotinic acetylcholine receptors on the terminals of myenteric neurons in Auerbach's plexus of guinea-pig ileum. During these studies we observed, that the presence of hemicholinium-3, an inhibitor of the high affinity choline uptake significantly influences the contraction of the longitudinal muscle strip preparation. Our aim was to investigate the neurochemical background of this effect and quantitatively characterize the action of HC-3. We studied the effect of HC-3 on epibatidine- and electrical stimulation-evoked contraction and release of [3H]acetylcholine from the guinea-pig longitudinal muscle strip preparation. We found that in the presence of tetrodotoxin, when the contribution of somatodendritic nicotinic acetylcholine receptors to the response was prevented due to the inhibition of axonal conduction, HC-3 inhibited the epibatidine-evoked contraction and [3H]acetylcholine release in the submicromolar range (IC50 = 897 nM and IC50 = 693 nM, respectively), whereas the electrical stimulation-evoked contraction was not affected by HC-3, and the release of [3H]acetylcholine was apparently enhanced. Our data indicate that HC-3 inhibits the presynaptic nicotinic acetylcholine receptors of myenteric neurons. Since these receptors play an important role in the regulation of cholinergic neurotransmission in the enteric nervous system, the use of HC-3 in [3H]acetylcholine release experiments might bias the interpretation of data.  相似文献   
54.
Recent studies on cardiac hypertrophy animal model suggest that inter-domain interactions within the ryanodine receptor (RyR2) become defective concomitant with the development of hypertrophy (e.g. de-stabilization of the interaction between N-terminal and central domains of RyR2; T. Oda, M. Yano, T. Yamamoto, T. Tokuhisa, S. Okuda, M. Doi, T. Ohkusa, Y. Ikeda, S. Kobayashi, N. Ikemoto, M. Matsuzaki, Defective regulation of inter-domain interactions within the ryanodine receptor plays a key role in the pathogenesis of heart failure, Circulation 111 (2005) 3400-3410). To determine if de-stabilization of the inter-domain interaction in fact causes hypertrophy, we introduced DPc10 (a peptide corresponding to the G2460-P2495 region of RyR2, which is known to de-stabilize the N-terminal/central domain interaction) into rat neonatal cardiomyocytes by mediation of peptide carrier BioPORTER. After incubation for 24 h the peptide induced hypertrophy, as evidenced by significant increase in cell size and [3H]leucine uptake. K201 or dantrolene, the reagents known to correct the de-stabilized inter-domain interaction to a normal mode, prevented the DPc10-induced hypertrophy. These results suggest that disruption of the normal N-terminal/central inter-domain interaction within the RyR2 is a causative mechanism of cardiomyocyte hypertrophy.  相似文献   
55.
56.
57.
Intermolecular recombination between the genomes of closely related RNA viruses can result in the emergence of novel strains with altered pathogenic potential and antigenicity. Although recombination between flavivirus genomes has never been demonstrated experimentally, the potential risk of generating undesirable recombinants has nevertheless been a matter of concern and controversy with respect to the development of live flavivirus vaccines. As an experimental system for investigating the ability of flavivirus genomes to recombine, we developed a “recombination trap,” which was designed to allow the products of rare recombination events to be selected and amplified. To do this, we established reciprocal packaging systems consisting of pairs of self-replicating subgenomic RNAs (replicons) derived from tick-borne encephalitis virus (TBEV), West Nile virus (WNV), and Japanese encephalitis virus (JEV) that could complement each other in trans and thus be propagated together in cell culture over multiple passages. Any infectious viruses with intact, full-length genomes that were generated by recombination of the two replicons would be selected and enriched by end point dilution passage, as was demonstrated in a spiking experiment in which a small amount of wild-type virus was mixed with the packaged replicons. Using the recombination trap and the JEV system, we detected two aberrant recombination events, both of which yielded unnatural genomes containing duplications. Infectious clones of both of these genomes yielded viruses with impaired growth properties. Despite the fact that the replicon pairs shared approximately 600 nucleotides of identical sequence where a precise homologous crossover event would have yielded a wild-type genome, this was not observed in any of these systems, and the TBEV and WNV systems did not yield any viable recombinant genomes at all. Our results show that intergenomic recombination can occur in the structural region of flaviviruses but that its frequency appears to be very low and that therefore it probably does not represent a major risk in the use of live, attenuated flavivirus vaccines.RNA viruses are able to undergo rapid genetic changes in order to adapt to new hosts or environments. Although much of this flexibility is due to the error-prone nature of the RNA-dependent RNA polymerase, which generates an array of different point mutations within the viral population (23), recombination is also a common and important mechanism for generating viral diversity (18, 31, 42, 58). Recombination occurs when the RNA-dependent RNA polymerase switches templates during replication, an event that is favored when both templates share identical or very similar sequences. Three types of RNA recombination have been identified: homologous recombination occurs at sites with exact sequence matches; aberrant homologous recombination requires sequence homology, but crossover occurs either upstream or downstream of the site of homology, resulting in a duplication or deletion; and nonhomologous (or illegitimate) recombination is independent of sequence homology (31, 42).When the same cell is infected by viruses of two different strains, or even different species, recombination between their genomic RNAs can potentially lead to the emergence of new pathogens. A case in point is the emergence of Western equine encephalitis virus, a member of the genus Alphavirus, family Togaviridae, which arose by homologous recombination between Eastern equine encephalitis virus and Sindbis virus (14).Some mammalian RNA viruses can recombine at a frequency that is detectable in experimental settings (1, 2, 55), and phylogenetic analysis of partial or complete genome sequences suggests that RNA recombination is a widespread phenomenon. Naturally occurring recombinant viruses have been identified in almost every family of positive-stranded RNA viruses (31, 58).Flaviviruses are members of the genus Flavivirus, family Flaviviridae, a family that also includes the genera Pestivirus and Hepacivirus. Several of the flaviviruses are important human pathogens, such as Japanese encephalitis virus (JEV), West Nile virus (WNV), the dengue viruses, yellow fever virus, and tick-borne encephalitis virus (TBEV).Although there has never been a report of a pathogenic flavivirus strain arising due to recombination involving attenuated vaccine strains (39), the urgent necessity to develop tetravalent vaccines containing all four serotypes of dengue virus—two such vaccines are currently undergoing clinical testing (45)—has recently brought the recombination issue to the forefront of discussion among researchers, regulators, and vaccine producers (39). It has been suggested that recombination, either between the strains present in a multivalent vaccine or between an attenuated vaccine strain and a wild-type strain, could lead to the emergence of new viruses with unpredictable properties (49).So far, recombination between flavivirus genomes has not been demonstrated directly in the laboratory. However, phylogenetic analysis of partial genome sequences available in the GenBank database has suggested that homologous recombination may have occurred between closely related strains of dengue virus (20, 52, 54, 59). An experimental approach for assessing the ability of flavivirus genomes to recombine is therefore urgently needed.Flavivirus virions are composed of a single-stranded, positive-sense RNA genome that, together with the capsid protein C, forms the viral nucleocapsid. The nucleocapsid is covered by a lipid envelope containing the surface glycoproteins prM and E. These glycoproteins drive budding at the membrane of the endoplasmic reticulum during the assembly stage and mediate entry of the virus into host cells (41). Replicons, defined as self-replicating, noninfectious RNA molecules, can be generated by deleting parts or all of the region coding for the structural proteins C, prM, and E from the viral genome but maintaining all seven of the nonstructural proteins and the flanking noncoding sequences, which are required in cis for RNA replication (25). By providing the missing structural protein components in trans, replicons can be packaged into virus-like particles that are capable of a single round of infection (10, 15, 24, 47).Typically, researchers developing novel replicating vaccines, especially ones that involve multiple components, make an effort to come up with strategies to prevent recombination, for example by “wobbling” codons, i.e., replacing codons in homologous regions with synonymous ones encoding the same amino acid but consisting of a different nucleotide triplet (50, 57). In this study, in order to assess the propensity of flavivirus genomes to recombine, we took an opposite approach, establishing a “recombination trap” that favors the selection and sensitive detection of recombination products. This system takes advantage of the ability of replicon pairs containing deletions in their structural protein genes to complement each other in trans and thus be propagated together in cell culture, and by passage at limiting dilutions, it allows infectious RNA genomes arising by recombination between the two replicons to be preferentially selected.Using the recombination trap, we have now obtained the first direct evidence of recombination between flavivirus genomes in the laboratory. Aberrant homologous recombination was observed twice with JEV replicons, resulting in viruses with unnatural gene arrangements and reduced growth properties compared to those of wild-type JEV. No infectious recombinants of any kind were obtained when TBEV or WNV replicons were used. Interestingly, we never detected a fully infectious wild-type genome arising by homologous recombination in any of these systems. The results of this study show that the propensity of flavivirus genomes to recombine in the region coding for the structural proteins appears to be quite low, suggesting that recombination does not represent a major risk in the use of live, attenuated flavivirus vaccines.  相似文献   
58.

Background

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterised by motor neuron degeneration. How this disease affects the central motor network is largely unknown. Here, we combined for the first time structural and functional imaging measures on the motor network in patients with ALS and healthy controls.

Methodology/Principal Findings

Structural measures included whole brain cortical thickness and diffusion tensor imaging (DTI) of crucial motor tracts. These structural measures were combined with functional connectivity analysis of the motor network based on resting state fMRI. Focal cortical thinning was observed in the primary motor area in patients with ALS compared to controls and was found to correlate with disease progression. DTI revealed reduced FA values in the corpus callosum and in the rostral part of the corticospinal tract. Overall functional organisation of the motor network was unchanged in patients with ALS compared to healthy controls, however the level of functional connectedness was significantly correlated with disease progression rate. Patients with increased connectedness appear to have a more progressive disease course.

Conclusions/Significance

We demonstrate structural motor network deterioration in ALS with preserved functional connectivity measures. The positive correlation between functional connectedness of the motor network and disease progression rate could suggest spread of disease along functional connections of the motor network.  相似文献   
59.

Background  

Association mapping using abundant single nucleotide polymorphisms is a powerful tool for identifying disease susceptibility genes for complex traits and exploring possible genetic diversity. Genotyping large numbers of SNPs individually is performed routinely but is cost prohibitive for large-scale genetic studies. DNA pooling is a reliable and cost-saving alternative genotyping method. However, no software has been developed for complete pooled-DNA analyses, including data standardization, allele frequency estimation, and single/multipoint DNA pooling association tests. This motivated the development of the software, 'PDA' (Pooled DNA Analyzer), to analyze pooled DNA data.  相似文献   
60.
A bi-directional, saturable transport of glutathione (GSH) was found in rat liver microsomal vesicles. GSH transport could be inhibited by the anion transport blockers flufenamic acid and 4, 4'-diisothiocyanostilbene-2,2'-disulfonic acid. A part of GSH taken up by the vesicles was metabolized to glutathione disulfide (GSSG) in the lumen. Microsomal membrane was virtually nonpermeable toward GSSG; accordingly, GSSG generated in the microsomal lumen could hardly exit. Therefore, GSH transport, contrary to previous assumptions, is preferred in the endoplasmic reticulum, and GSSG entrapped and accumulated in the lumen creates the oxidized state of its redox buffer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号